• Title/Summary/Keyword: 조화함수

Search Result 131, Processing Time 0.03 seconds

Geopotentinl Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis (섹터모드의 로스비하우어비츠 파동과 균형을 이루는 고도장)

  • Cheong, Hyeong-Bin;Park, Ja-Rin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.936-946
    • /
    • 2007
  • Analytical geopotential field in balance with the sectoral mode (the first symmetric mode with respect to the equator) of the Rossby-Haurwitz wave on the inclined rotation axis was derived in presence of superrotation background flow. The balanced field was obtained by inverting the divergence equation with the time derivative being zero. The inversion consists of two steps, i.e., the evaluation of nonlinear forcing terms and the finding of analytical solutions based on the Poisson's equation. In the second step, the forcing terms in the from of Legendre function were readily inverted due to the fact that Legendre function is the eigenfunction of the spherical Laplacian operator, while other terms were solved either by introducing a trial function or by integrating the Legendre equation. The balanced field was found to be expressed with six zonal wavenumber components, and shown to be of asymmetric structure about the equator. In association with asymmetricity, the advantageous point of the balanced field as a validation method for the numerical model was addressed. In special cases where the strength of the background flow is a half of or exactly the same as the rotation rate of the Earth it was revealed that one of the zonal wavenumber components vanishes. The analytical balanced field was compared with the geopotential field which was obtained using a spherical harmonics spectral model. It was found that the normalized difference lied in the order of machine rounding, indicating the reliability of the analytical results. The stability of the sectoral mode of Rossby-Haurwitz wave and the associated balanced field was discussed, comparing with the flrst antisymmetric mode.

닮은 궤도함수 분석을 통한 계산근사

  • Jang, Junyoung;U, Min-U;Sin, Seok-Min
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.211-224
    • /
    • 2014
  • 금속을 포함한 분자에 대한 양자계산은 정확하고 일관된 결과를 얻기가 힘들 뿐만 아니라 상당한 컴퓨터 자원을 소비하며 많은 시간이 소요된다. 본 연구에서는 복잡한 양자계산의 근사를 위한 방법으로 본래 정성적인 구조 예측에 사용되는 닮은 궤도함수분석(Isolobal Analysis)을 정량적인 측면에서 접근해보고, 이를 통해 닮은 궤도(Isolobal) 구조를 가지고 있는 단위들(radical 등)에 대해서 계산을 근사할 수 있는 방법에 대해 논의한다. $CH_3$, $CH_2$와 닮은 궤도 구조를 가진 전형 원소를 중심으로 하는 분자들에 대해 가장 기초적인 근사계산인 Hartree-Fock 양자계산을 수행하였다. $(CUH_5){_2}^{2-}$를 표적으로 결합 구조를 예측하기 위한 경향성을 계산한 결합 성질로부터 파악한다. 분석 결과 동일한 주기에 대해서는 원자반지름(Atomic radii)에 대해 조화 형태의 결합에너지가 얻어졌으며, 동일한 족에 대해서는 좋은 근사가 되지 않았다. 파악된 경향성을 바탕으로 금속의 결합을 근사한 에너지에 대해서는 -1054.1875 kJ/mol로 비교적 큰 오차를 보였으나, 오차 항에 대한 분석이 가능해 추가적인 계들에 대한 계산으로 근사를 교정할 수 있을 것으로 보인다.

  • PDF

Gravity modeling and application to the gravity referenced navigation (중력모델링과 중력참조항법에의 적용)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Yu, Myeong-Jong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.543-550
    • /
    • 2011
  • The gravity anomaly is a basic geophysical data applied in various fields such as geophysics, geodesy and national defense. In general, the gravity anomaly is used through a interpolation process based on the constructed database. The gravity variation, however, is appeared in various shapes depending on the topography and the density of the underground structures. Therefore, the interpolation could lead to a large differences if the gravity fields do not satisfy the assumptions on the signal behavior like linear or a certain degree polynomials. Furthermore, the interpolation does not reflect the physical characteristics of the gravity such as the harmonic condition. In this study, the gravity modeling using the plane Fourier series and radial basis functions are performed to overcome the problems in the usual interpolation. The results of the modeling is analyzed for the case of the gravity referenced navigation focused on the signal characteristics. Based on the study, it was found that the results from modeling are not much different to that from the interpolation in a smoothly varied area. In case of the highly varied area, however, a large differences are appeared among the three methods. Especially, the Fourier series shows the most smooth variations in the modeled gravity values while the highest variations appeared in the interpolation. Applying to the gravity referenced navigation, it was found that the modeling is more effective in calculation cost. It is considered that the results from this study provides a basis on effective modeling of the gravity fields in terms of the signal characteristics and resolution for various application fields.

Some Theoretical Considerations in Body Tide Calculation (고체지구조석계산에 있어 몇 가지 이론적 고찰)

  • Na, Sung-Ho;Shin, Young-Hong;Baek, Jeong-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • The largest terms in the solid Earth body tide calculation are second degree spherical harmonic components due to the moon or the sun, and they compose about 98 percent of total contribution. Each degree harmonics of the tidal perturbation should be evaluated through multiplication with distinct Love numbers or their combinations. Correct evaluation of these terms in gravity tide is considered with re-calculated Love numbers. Frequency dependence of Love numbers for spherical harmonic tide upon the order number is discussed. Tidal displacement and tidally induced deviation of the vertical are also evaluated. Essential concepts underlying the body tide calculation are briefly summarized.

Dynamic Behaviors of an Impact System under Randomly Perturbed Harmonic Excitation by the Path-Integral Solution Procedure (Path-Integral Solution을 이용한 랜덤동요된 조화가진력을 받는 임팩트시스템의 거동분석)

  • 마호성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.83-91
    • /
    • 2004
  • Nonlinear system responses of an impact system under randomly perturbed harmonic excitations are predicted in the probability domain by adopting the semi-analytical procedure previously developed. The semi-analytical procedure is obtained by solving the Fokker-Planck equation corresponding to the stochastic differential equation of the given impact system by utilizing the path-integral solution. The evolutionary joint probability density functions are generated by using the method, and the characteristics of nonlinear dynamic response behaviors of the system are examined. Noise effects on the responses are also examined. It Is found that the semi-analytical method can provides the accurate information of the responses via the joint probability functions for the impact system. It is found that the noises weaken and eventually terminate the chaos in the responses, but it is also found that the chaotic signatures reside in the presence of the external noise with relatively high intensity. The joint probability density function shows that the ensemble of the system responses are weakly stationary.

Sound Radiation From Beams Under the Action of Harmonic Point Force (조화 집중 하중을 받는 보에서의 Sound Power 해석)

  • 김병삼;홍동표
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.41-45
    • /
    • 1991
  • 구조 진동에 의해 발생하는 Relative Sound Power를 계산하는 문제가 최근 에 중요시되고 있다. 이 논문에서는 조화적인 집중하중에 대한 무한 탄성보 에서 방출하는 Relative Sound Power를 연구한다. Sound Power는 수치적으 로 적분되고 몇가지 인자들의 함수로써 적분인자를 표시하였다. Keitie와 Peng[2]는 진동하는 보로부터의 방출하는 Relative Sound Power에 대한 하 중 길이의 효과, 그리고 water 하중을 받는 보에서 방출하는 Acoustic radiation에 대한 Source 운동과 기초 강성의 효과를 연구하였다. 보의 진동 응답에서 light fluid loading과 heavy fluid loading에 의한 양쪽의 반응을 고 려한다. 보에는 기초 강성과 Damping 그리고 장력이 작용한다. water 하중 과 air 하중을 받는 보에서 Damping의 변화에 대한 보로부터 방출하는 relative sound power의 크기를 결정하였다. 일반적으로 인장력보다 압축력 이 작용할 때 relative sound power level이 크다는 것을 알고 있다. 실제로 인장력이나 압축력이 보에 작용할 때 relative sound power에 얼마나 영향을 미치는가를 계산하였다. 그리고 진동계로부터 방출하는 sound fluid loading 과 기초 강성에 기인한 복잡한 효과를 해석하였다. 이 논문의 목적은 강성계 수와 wavenumber 비, 그리고 fluid loading에 대한 sound power의 응답에 대하여 설명하고자 한다.

  • PDF

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum-Theory (최소 분산 캡스트럼을 이용한 노이즈속에 묻힌 임펄스 검출방법-이론)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.642-647
    • /
    • 2000
  • Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.

  • PDF

Numerical Simulation of MIT Flapping Foil Experiment (MIT 요동 익형의 수치해석)

  • Kang, Dong-Jin;Bae, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.777-784
    • /
    • 2000
  • A Navier-Stokes code based on an unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number ${\kappa}-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for the whole experimental domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. The first harmonics of the velocity in the boundary layer shows local peak value inside the boundary layer and also local minimum near the edge of boundary layer. It is intensified as it develops along the blade surface. This is shown to be caused as the unsteadiness inside the boundary layer is being convected at a speed less than the free stream value. It is also shown that there is negligible mixing of the unsteadiness between the boundary layer and the free stream.

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum -Application on Faults Detection in a Bearing System (최소 분산 캡스트럼을 이용한 노이즈 속에 묻힌 임펄스 검출 방법-베어링 결함 검출에의 적용)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.985-990
    • /
    • 2000
  • The signals that can be obtained from rotating machines often convey the information of machine. For example, if the machine under investigation has faults, then these signals often have pulse signals, embedded in noise. Therefore the ability to detect the fault signal in noise is major concern of fault diagnosis of rotating machine, In this paper, minimum variance cepstrum (MV cepstrum) . which can easily detect impulse in noise, has been applied to detect the type of faults of ball bearing system. To test the performance of this technique. various experiments have been performed for ball bearing elements that have man made faults. Results show that minimum variance cepstrum can easily detect the periodicity due to faults and also shows the pattern of excitation by the faults.

  • PDF

Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구)

  • 홍성철
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF