DOI QR코드

DOI QR Code

Geopotentinl Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis

섹터모드의 로스비하우어비츠 파동과 균형을 이루는 고도장

  • Cheong, Hyeong-Bin (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Park, Ja-Rin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 정형빈 (부경대학교 환경대기과학과) ;
  • 박자린 (부경대학교 환경대기과학과)
  • Published : 2007.12.31

Abstract

Analytical geopotential field in balance with the sectoral mode (the first symmetric mode with respect to the equator) of the Rossby-Haurwitz wave on the inclined rotation axis was derived in presence of superrotation background flow. The balanced field was obtained by inverting the divergence equation with the time derivative being zero. The inversion consists of two steps, i.e., the evaluation of nonlinear forcing terms and the finding of analytical solutions based on the Poisson's equation. In the second step, the forcing terms in the from of Legendre function were readily inverted due to the fact that Legendre function is the eigenfunction of the spherical Laplacian operator, while other terms were solved either by introducing a trial function or by integrating the Legendre equation. The balanced field was found to be expressed with six zonal wavenumber components, and shown to be of asymmetric structure about the equator. In association with asymmetricity, the advantageous point of the balanced field as a validation method for the numerical model was addressed. In special cases where the strength of the background flow is a half of or exactly the same as the rotation rate of the Earth it was revealed that one of the zonal wavenumber components vanishes. The analytical balanced field was compared with the geopotential field which was obtained using a spherical harmonics spectral model. It was found that the normalized difference lied in the order of machine rounding, indicating the reliability of the analytical results. The stability of the sectoral mode of Rossby-Haurwitz wave and the associated balanced field was discussed, comparing with the flrst antisymmetric mode.

기울어진 자전축을 갖는 회전계에서, 일정한 각속도로 회전하는 동서풍이 있는 경우에 대해서 로스비하우어비츠 파동의 섹터모드(적도에 대한 반구 비대칭의 첫 번째 모드)와 균형을 이루는 지위고도장을 해석적으로 유도하였다. 균형장은 발산방정식으로부터 시간변화를 제거하고 라플라시안 연산자를 역산함으로써 구하였다. 역산은 비선형항의 계산과 포이슨 방정식의 해를 구하는 두 단계의 연산과정으로 이루어져 있다. 두 번째 단계에서, 구면조화함수로 표현되는 강제력의 항은 구면조화함수의 선형관계를 이용하였고, 그 이외의 항은 구면조화함수를 적분함으로써 구하였다. 균형장은 여섯 개의 동서파수 성분으로 표현됨이 드러났다. 본 연구에서 구한 균형장은 적도에 대하여 비대칭의 구조를 가지기 때문에, 대칭의 구조만을 가지는 것에 비하여 미분방정식의 수치해의 검종법으로서의 활용도가 높다. 일정한 각속도를 갖는 배경 동서풍이 지구의 자전각속도와 같거나 1/2에 해당하는 경우에는, 일부 동서파수 성분이 제거되는 것으로 나타났다. 이론적으로 구한 균형장은 정교한 수치모델을 통하여 구한 균형장과 거의 정확하게 같은 것으로 밝혀져, 이론적 해의 타당성이 입증되었다. 마지막으로, 로스비하우어비츠 파동의 섹터모드와 균형을 이루는 지위고도장의 안정성을 장기간시간적분을 통하여 살펴보았다.

Keywords

References

  1. Baines, P.G., 1976, The stability of planetary waves on a sphere. J. Fluid Mech., 73, 193-213 https://doi.org/10.1017/S0022112076001341
  2. Browning, G.L., Hack, J.J., and Swarztrauber, P.N., 1989, A comparison of three numerical methods for solving differential equations on the sphere. Mon. Wea. Rev., 117, 1058-1075 https://doi.org/10.1175/1520-0493(1989)117<1058:ACOTNM>2.0.CO;2
  3. Cheong, H.-B., 2006, A dynamical core with double Fourier series: Comparison with the spherical harmonics method. Mon. Wea. Rev., 134, 1299-1315 https://doi.org/10.1175/MWR3121.1
  4. Daley, R., 1983, Linear non-divergent mass-wind laws on the sphere. Tellus, 35A, 17-27 https://doi.org/10.1111/j.1600-0870.1983.tb00181.x
  5. Galewsky, J., Scott, R.K., and Polvani, L.M., 2004, An initial-value problem for testing numerical models of the shallow water equations. Tellus, 56A, 429-440
  6. Haurwitz, B., 1940, The motion of atmospheric disturbances on the spherical earth. J. Mar. Res., 3, 254-267
  7. Hoskins, B.J., 1973, Stability of the Rossby-Haurwitz wave. Quart. J. Roy. Meteorol. Soc., 99, 723-745 https://doi.org/10.1002/qj.49709942213
  8. Lauter, M., Handorf, D., and Dethloff, K., 2005, Unsteady analytical solutions of the spherical shallow water equations. J. Comput. Phys., 210, 535-553 https://doi.org/10.1016/j.jcp.2005.04.022
  9. Orszag, S.A., 1970, Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890-895 https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
  10. Ortland, D.A., 2005, Generalized Hough mode: The structure of damped global-scale waves propagating on a mean flow with horizontal and vertical shear. J. Atmos. Sci., 62, 2674-2683 https://doi.org/10.1175/JAS3500.1
  11. Phillips, N.A., 1959, Numerical integration of the primitive equations on the hemisphere. Mon. Wea. Rev., 87, 333-345 https://doi.org/10.1175/1520-0493(1959)087<0333:NIOTPE>2.0.CO;2
  12. Swarztrauber, P.N., 1996, Spectral transform methods for solving the shallow-water equations on the sphere. Mon. Wea Rev., 134, 730-744
  13. Thuburn, J. and Li, Y., 2000, Numerical Simulations of Rossby-Haurwitz waves. Tellus, 52, 180-189
  14. Williamson, D.L. and Browning, G.L., 1973, Comparison of grids and difference approximations for numerical weather prediction over the sphere. J. Appl. Meteor., 12, 264-274 https://doi.org/10.1175/1520-0450(1973)012<0264:COGADA>2.0.CO;2
  15. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., and Swarztrauber, P.N., 1992, A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211-224 https://doi.org/10.1016/S0021-9991(05)80016-6

Cited by

  1. Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type vol.34, pp.5, 2013, https://doi.org/10.5467/JKESS.2013.34.5.393
  2. Construction of Orthogonal Basis Functions with Non-Divergent Barotropic Rossby-Haurwitz Waves vol.35, pp.5, 2014, https://doi.org/10.5467/JKESS.2014.35.5.333
  3. Construction of the Spherical High-Order Filter for Applications to Global Meteorological Data vol.36, pp.5, 2015, https://doi.org/10.5467/JKESS.2015.36.5.476
  4. Stability of the Divergent Barotropic Rossby-Haurwitz Wave vol.37, pp.2, 2016, https://doi.org/10.5467/JKESS.2016.37.2.107
  5. Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model vol.39, pp.4, 2018, https://doi.org/10.5467/JKESS.2018.39.4.317