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Abstracts: Analytical geopotential field in balance with the sectoral mode (the first symmetric mode with respect to the
equator) of the Rossby-Haurwitz wave on the inclined rotation axis was derived in presence of superrotation background
flow. The balanced field was obtained by inverting the divergence equation with the time derivative being zero. The
inversion consists of two steps, i.e., the evaluation of nonlinear forcing terms and the finding of analytical solutions based
on the Poisson’s equation. In the second step, the forcing terms in the form of Legendre function were readily inverted
due to the fact that Legendre function is the eigenfunction of the spherical Laplacian operator, while other terms were
solved either by introducing a trial function or by integrating the Legendre equation. The balanced field was found to be
expressed with six zonal wavenumber components, and shown to be of asymmetric structure about the equator. In
association with asymmetricity, the advantageous point of the balanced field as a validation method for the numerical
model was addressed. In special cases where the strength of the background flow is a half of or exactly the same as the
rotation rate of the Earth, it was revealed that one of the zonal wavenumber components vanishes. The analytical
balanced field was compared with the geopotential field which was obtained using a spherical harmonics spectral model.
It was found that the normalized difference lied in the order of machine rounding, indicating the reliability of the
analytical results. The stability of the sectoral mode of Rossby-Haurwitz wave and the associated balanced field was
discussed, comparing with the first antisymmetric mode.
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Introduction

Large-scale atmospheric motions are known to be in
geostrophic  balance with the pressure or with
geopotential field over global domain in good
approximations except over the equatorial area. The
geostrophic balance for the synoptic or long time-scale
disturbances is better than that for the disturbances
with short time scale. As the atmospheric disturbances
are composed of global normal-mode waves, each
normal-mode wave should be in good geostrophic
balance. The global-scale flow (or geopotential) in
geostrophic balance can be achieved by solving the
global linear balance equation on the sphere (Daley,
1983). The poor balance over the equatorial belt in the
case of geostrophic regime can be improved, if we
use the nonlinear balance equation over the sphere.
Although the geostrophic balance in this case does not
hold in rigorous way, even off the equator, the balance
between the mass and wind is improved in the context
of barotropic motion (Daley, 1983; Swarztrauber,
1996; Ortland, 2005).

The normal mode of the nonlinear non-divergent
barotropic motion is called Rossby-Haurwitz (R-H)
wave, which is the Rossby wave defined on the global
domain (Haurwitz, 1940). The R-H wave is expressed
with the Legendre function in meridional direction and
the Fourier harmonics in the zonal direction. Since the
lower R-H mode for each zonal wavenumber is given
as a simple function of the cosine latitude, it is of
particular importance in many analytical approaches
for numerical models. For example, the balanced field
associated with the first antisymmetric mode has been
used as a validation method for the numerical models
for shallow water equations and primitive equations
(Phillips, 1959; Williamson and Browning, 1973;
Browning et "al, 1989; Williamson et al, 1992;
Cheong, 2006). The balanced geopotential field
obtained by Phillips (1959) is now considered as a
standard validation method, because it is provided
with an analytical form. As illustrated in the
literatures, the geopotential associated with the
antisymmetric mode has a symmetric structure about

the equator. To incorporate an asymmetric balance
field is considered to be a more useful way in
validating the numerical model because both symmetric
and anti-symmetric structure are included.

For a given super-rotating background flow, the R-
H waves of the same degree (or the total wavenumber-
like index on the spherical surface) are the normal
modes of the nondivergent barotropic equation (or the
Legendre function), regardless of the zonal wavenumber.
This implies that as the degree of the normal mode
becomes large the number of R-H waves which can
be considered as the normal mode increases. If we
remember that the degree of the Legendre function
remains the same even though it (or the R-H wave) is
inclined about a coordinate axis, it can be said that a
rotated Legendre function or the R-H wave is a
normal mode of the nondivergent barotropic equation.
In analytical approach, however, the procedure to
obtain the balanced field for the inclined R-H wave is
quite complicated due to the nonlinear terms associated
with the inclination. The inclined R-H wave is very
useful in validating a numerical model because it
actually contains more-than-one zonal wavenumber
components, unlike the other methods with analytical
solutions (e.g., Lauter et al., 2005): The number of the
zonal wavenumber components increases as the
inclination angle approaches 7/2.

In this study, the geopotential in balance with the
sectoral mode of the R-H wave on an inclined rotation
axis is obtained analytically. The divergence equation
is used instead of the momentum equation, which was
previously used by Phillips (1959) and Williamson et
al. (1992) to avoid the complexities arising from the
time derivative. An efficient way to invert the
nonlinear balance equation will be presented in detail.
In order to assess the reliability of the analytic
geopotential field, a state-of-the-art numerical model is
used.

This paper is organized as follows. In the next
section, the R-H wave on the inclined rotation axis is
given. The procedure to obtain the balanced geopotential
associated with the R-H wave is presented in section
3. In section 4 the analytical geopotential field is
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Fig. 1. Schematic illustration of the inclination of the rotation axis: The arrow denotes the rotation axis, and Q means the rota-
tion vector. (a) The rotating coordinate system without inclination, (b) The case of the inclination with t=n/6. For better illustra-
tion, a Rossby-Haurwitz wave of the first antisymmetric mode with zonal wavenumber 8, superimposed on the superrotating

background flow, is plotted with orthographic map projection.

compared with that obtained numerically, and its
stability is discussed. Summary and conclusions are
given in the final section.

Rossby-Haurwitz Waves on the
Inclined Rotation Axis

The Coriolis parameter f on the rotating coordinate
system where the axis of rotation is inclined about y-
axis toward South pole by the angle t (see Fig. 1) is
given as

1=20(cosTsind+sintcosicosd), 8y

where A and O are the longitude and latitude,
respectively, and Q represents the rotation rate of the
system. When the background flow is given to rotate
around the inclined rotation axis, the R-H wave
becomes a normal mode of the nonlinear vorticity
equation. Let’s consider the R-H wave of the first
-symmetric mode with the zonal wavenumber m in the
presence of the basic flow:

v =-a"Q(wcosTsind+sintcosicosd)
+a’KQcos™0cosm(L—ct), )

where ¢, a, and Q are the time, radius, and the inverse
rotation rate (') of the Earth, respectively, @ is the

strength of superrotation, o is the angular velocity, K is
the amplitude. Hereafter, for convenience, the dependent
variables are nondimensionalized using a and Q' as
the length and time scale, respectively. The velocity
components and relative vorticity associated with the
R-H wave are written in nondimensional form as

4= 0costcosd — osintsinfcosh
+mcos™ 'Bsinfcosm.
v = @sintsink — Kmcos™ Osinm.
£ =2(wcostsind + wsintsinBcosi)
- Km(m + )cos"Ocosm). (3a-c)

2
L(a—ﬁcosea—%

9 oA

where ([ EVZ\V] with V> =
cos'0

2)
cosegé was used.

Geopotential in Balance with the
Rossby-Haurwitz Wave on the
Inclined Rotation Axis

In this section, the balanced field associated with
the R-H wave will be derived based on the nonlinear
balance equation on the sphere. To obtain the
geopotential field from the balance equation, the
spherical Laplacian operator should be inverted with
an appropriate method. The advantage of this method
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(ie., inversion method) over the traditional method
which uses the momentum equations (e.g., Phillips,
1959; Williamson et al., 1992; Cheong, 2006) is that
the difficulty related with time derivative term can be
avoided. In general case where an arbitrary
streamfunction field is given, the inversion can not be
carried out analytically,. The nonlinear balance
equation, which corresponds to the divergence
equation without the time derivative term, is written in
dimensionless form as follows:

=G

Vz[q) n W+ v2:l

G=ﬁ{%V(C+ﬁ—cosea—%U@+f}} @)
where ® is the geopotential, and (U, ¥)=(u,v)cosd
with # and v being the velocity components in
longitudinal and latitudinal directions, respectively. Eq.
(4) is a standard Poisson’s equation in spherical
coordinate system. The forcing function G can be
evaluated with the use of vorticity and velocities given
in (3). Once the forcing function is obtained, the
geopotential is given by

2,.2
u+v

O=V3G- 5 +®,, )

where V™ denotes the inverse Laplacian operator and
@y is a constant or the global average.

Since the balance equation is inherently nonlinear,
the balanced geopotential will be composed of zonal
wavenumber components whose number is larger than
two, where the two refers to the zonal wavenumber m
and 1 components which are associated with the R-H
wave and the inclined rotation axis, respectively.
Detailed procedure to get the balanced field is given
below

The nonlinear terms consist of two terms.
Substituting (3) into the advection terms yields

G=-0(1+)2cost - sin’t)(3c0s°0 — 2)
+%K2m2(m +1)cos” ™ P0[(2m+1)cos’0—2m]

+ 120(1 + o)costsintcosOsinOcosi

+30(1 + @)sin*tcos Bcos2h
+ KmRsintcos™ '@cos(m — DA
— Km[o(m + 1)+ 2(1 + @)(m + 2)costcos”0sinBcosm,

_Kmlm +2)[1 +o+logm+ 1)} sirrzcod™ Bcos(m + I

+ % Krnt(m + 1)2m + 1)cos™0cos2mh, ©)

where
R=om’+om+20+2 +

(—%mmz—%wm—3m—m—2)cosze. @)

Note that the terms in equation (6) consist of terms
that have the same order with respect to the cosine
latitude except the terms related with the zonal
wavenumber component #m+1 and zero. The m+1
component contains two terms, each having the order
of cos™'0 and cos™'0, while zero component contains
cos*0 and cos™'0 with k=1 in the first term and
05”0 and cos’™" 9 with k=m in the second term.
The terms except the zonal wavenumber m+ 1 can be
readily inverted because they are in the form of either
Legendre function or simple function of cosine
latitude. We have found that the method used in the
previous studies (Phillips, 1959; Williamson et al.,
1992; Cheong, 2006) is not appropriate for the case of
inclination of the rotation axis. The functions of
cosine or sine latitude included in (6) can be classified
into one of the following forms:

cos"Bcosm,

cos"0sinOcosm.

cos™*0[(2m + 1)cos™® — 2m]

(peos™ 0 + gcos™ " O)cos(m — DA, (8a-d)

where p and ¢ are constants. Functions of (8a) and
(8b) are inverted with ease because they are the
Legendre functions:

V2cos"@cosmh = _(;mcos'"ecosmx
2 . 1 m
" = _cos"®
V7 cos"0sinOcosm Tl +2)cos

sinBcosmA , (9a,b)
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Inverse Laplacian of (8c) can be obtained either by
integrating the Laplacian operator with respect to the
latitude, or by seeking the function in the form of
cos™® through trial and error. We have found that
operation of the Laplacian to cos™@ results in (8c)
with constant multiple of (—2m), therefore,

V2cos™"0[(2m-+1)cos 0—2m] = %coszme . (10)

Inversion of (8d) is performed by assuming that the
inverse Laplacian (denoted as X) is composed of two
terms, each having different order, e.g.,

X=(rcos™'0 + scos™'B)cos(m — DA, 11)

where 7 and s are constants. Applying the Laplacian
operator to (11) and comparing the result with (8d),
the constants » and s are determined:

V2 (reos™ 0 + scos™'@)cos(m — )i =
[{4sm — rm(m — 1)}cos™ 'O — s(m + 1)(m +2)cos™ 0]

cos(m— 1A, (12)
which yields
s = —-—.q—
(m+1)(m+2)
_ p—4sm
= “mGm=1)" (13)

In (13) r becomes infinite in case of m=1, which
will make the balanced field singular. Fortunately,
however, this does not happen because the factor (m —
1) disappears when the inverse Laplacian of G is
combined with the kinetic energy term.

Then, the inverse Laplacian of the nonlinear terms
has the form:

v2G= % (1 + 0)2cos’ - sin’t)cos’d

- %sz(m+ 1)cos*™0

- 20(1 + @)costsintcosBsinfcosi
- % o(1 + o)sin’tcos’dcos2)
+ (Ricos™ 0 + Rycos™"0)Ksintcos(m — 1)A

+Kmlo + o+ 21+ o) costcos”BsinBcosma,
m+1

+ Km[%co + ('Inj_oi)} sintcos™ ' Bcos(m + 1)L

- 4_1‘ Kom(m + 1)cos"dcos2mi. (14)

where

R = 2mlo(m+3)+2]-[om(m+1)+2(1+@)](m+1)
t (m-1)(m+1)

R,="mlo@m*3)+2] (15)

2(m+1)

Evaluation of the term representing the kinetic
energy is straightforward. As in the case of the
advection terms, there appear six non-zonal wavenumber
components along with the zonal-mean component:

—u2+v2=—10)2C2C2—10)252(1+S2)
2 2 V9 4 T 0

—%K2m2C§('”'l)(l +82)+028,C,CoSacosh

+%m2SfC§cos2K+%KmerCZ'_l(l +82)cos(m—1)A
—Km(oCTCg'Secosmx—%KmmSTCZ’”cos(m +1)A
+%K2m2C§mc052m7\. , (16)

where C.=cost, S.=sint, Cy=cos0, and Ss = sind.
The balanced field, then, can be obtained by

combining (14) and (16). After some manipulation of

the coefficients for each zonal wavenumber

components, we have
o= ¢0+%m(z+m)(ch—si)cé

—ZKmC D 2m+CY)

-0(2+0)C,S,CeSecosA

—‘l‘m(2+m)SfC§cos2k

+Kgilntr“3[2+mC§]STC§""lcos(m— 1A

+Kmo CTCZ'SecosmK—%KmmSTCZ'Hcos(m +1DA

—%szZ 2" os2m.. 17
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It is worthy to note that the singularity for the term
related with cos(m—1)A, shown in Eq. (13), has
disappeared. In Eq. (17) the highest order for the
cosine latitude is 2, which corresponds to the twice
of the total wavenumber of the streamfunction. There
are only two terms which are independent of the wave
amplitude of the streamfunction K: the zonal
wavenumber component of one and two. These terms
disappear in a special case of @ =-2, ie., easterly
superrotation with the magnitude being the same as
the Earth’s rotation. In a special case where the
inclination of the rotation axis is not considered, the
geopotential field in (17) becomes

Doy = (DO+%(0(2+0))C3C§2)

K G 2m+C)

2(1+w) m
+Km TI) C.CySgcosmh

—%szcg'"coszmx . (18)

In comparison with the first antisymmetric mode
(Philiips, 1959; Williamson et al., 1992), the balanced
field for the first symmetric mode has lower order by
two for both the zonal-mean and wave components. Tt
is easy to find that the geopotential field in (18) is
asymmetric about the equator, due to the term related
with cosmA.

Comparison with the Numerical
Result and Stability

In this section, the analytical balanced field
associated with the R-H wave will be compared with
the balanced field which is obtained numerically. For
this purpose, we use the spherical harmonics pseudo-
spectral model (Orszag, 1970; Swarztrauber, 1996;
Cheong, 2006). The dependent variables are expanded
with the surface spherical harmonics function, which
consists of the Legendre function and Fourier series in
latitudinal and longitudinal directions, respectively,
e.g.,

M M
e;(x,e)=Re{z > cn,mP':m)expimx} 19)
n=lmim=—M
where P;(p) is the Legendre function of order m
and degree n with p=sin®, {,, is the spectral-
expansion coefficient of ((A,0), and M means the
largest total wavenumber in the model. The spectral
coefficients are calculated through the spectral
transform using the orthogonality of the spherical
harmonics functions. For more details on the spherical
harmonics spectral method, refer to Swarztrauber
(1996), Galewsky et al. (2004), and Cheong (2006).
The calculations were performed in double precision
which provides 14 or 15 digits of decimal point for
real variables. In spectral notation, the balanced field
is expressed as

M M
®(2,0) =3 3D, Py(n)coski, (20)
n=kk=0
where ®@,; is the spectral-expansion coefficient of
D(1,0). The coefficient @, is obtained from the
spectral coefficients of the nonlinear terms:
nk=_;Gn i—Enks 21
’ n(n+1) © ’
where G,x and E,x are the spectral coefficients of G
and 0.5+, respectively.

The difference between analytic and numerical
results is evaluated in terms of the L-norm on the
spherical domain. The normalized difference of
geopotential field is given by

4 N2 12
@)= {2(—&‘"1@""‘) } , @
7 (D)

where the superscript A and N represent the analytical
and numerical results, respectively, the summation is
done over the globe, and the subscripts i and j denote
the grid-point index. The number of transform
320 x 160, which  roughly
corresponds to 1.875 resolution.

Gaussian-grids s

Fig. 2 presents the orthographic projection of the R-
H wave of the first symmetric mode with zonal
wavenumber 8 and the associated balanced field,
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Fig. 2. The Rossby-Haurwitz wave of the first symmetric mode with zonal wavenumber 8 and the associated balanced field,
which were illustrated with the orthographic map projection. (a) Streamfunction, (b) Vorticity, (¢) Balanced geopotential obtained
by analytical method, (d) Balanced geopotential calculated by spherical harmonics spectral method. The contour interval is 0.005
for (a), (c), and (d), and 0.2 for (b). Positive (negative) values are in solid (dashed) lines. The inclination of the rotation axis is
zero (t=0), the amplitude of the wave is K'=0.013348, and the background superrotation flow is not included (@ =0).

where 1=0, K=0.013348, and © =0 (see Eq. 18).
The streamfunction and vorticity have a sectoral
structure, where the perturbation of the same sign runs
from the South pole to the North pole. It is noted that
the geopotential fields in Fig. 2(c) and (d) exhibit the
same structure over the globe, implying that the
analytic formula was correctly derived. Althought the
first antisymmetric mode for the geopotential field has
only symmetric structure with respect to the equator
(Phillips, 1959; Williamson and Browning, 1973;
Williamson et al., 1992), the geopotential field in
balance with the R-H wave of the first symmetric
mode shows neither symmetric nor antisymmetric
structure. - When the balanced field is used as a
validation method for a numerical model, this may be
regarded as advantageous over the antisymmetric
mode because it naturally provides a test bed for the

performance of a model on maintaining the hemispheric
symmetricity of the perturbation.

Fig. 3 is the same as Fig. 2 but for 1=n/3, K=
0.013348, and ® = 1/70. In this case, ® corresponds to
0.50, with o, being the strength of the mean flow
which can make the R-H wave stationary. It is clear
that a part of the wave pattern of geopotential is
distorted to a large extent under the influence of the
inclination of rotation axis, while the vorticity is little
affected. This is due to large amplitude of the vorticity
perturbation, compared to the zonal-mean part.
Though not being clearly seen in this figure due to the
orthographic projection, there is another distorted part
of the geopotential field on the other longitudinal
location (on the opposite side of the globe).

Table 1 presents Z(®) for the case shown in Fig. 3
but for different inclination angles. The normalized
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Fig. 3. The same as Fig. 2 except 1=7/3 and o = 1/70.

differences in the order of machine rounding for ali
cases suggest that the analytic formula for the
balanced geopotential is reliable. The normalized
difference as shown in Table 1 does not seem to
depend on the inclination angle of the rotation axis.
The small variation of the difference within one order
is not considered to be significant because they are
near the machine rounding error.

Shown in Table 2 is the sensitivity of L(®) to the
zonal wavenumber of the R-H wave m. It remains
also in the order of machine rounding for all zonal
wavenumber components. The normalized difference
becomes larger for increased zonal wavenumber by

Table 1. The inclination angle and the normalized differ-
ence between the analytical and calculated geopotential field
for the Rossby-Haurwitz wave shown in Fig, 3

Inclination angle (1) logioh (D)
w6 -15.9780
w4 -15.9970
/3 -16.0666
2 -16.3254

about one order: It increased from about -15 to -14
where the zonal wavenumber changed from m =16 to
m=32. The decreased accuracy for smaller scale is a
common feature found in the calculation of the
nonlinear differential equations with numerical method
(Williamson et al, 1992; Thuburn and Li, 2000;
Cheong, 2006). As long as the zonal wavenumber of
the R-H wave is given much smaller than the
fruncation limit of the numerical model, the normalized
difference is not likely to increase significantly.

Table 2. Dependence of the normalized difference between
the analytical and calculated geopotential field for the
Rossby-Haurwitz wave with n=m on the zonal wavenum-
ber. The dynamical parameters used are K=0.05, T=m/3,
and © = [m(m+1)-2]".

zonal wavenumber

of Rossby-Haurwitz wave (1) loguo: (®)
4 -15.4598
8 -15.6809
16 -15.0260
32 -14.0961

48 -14.0683
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Fig. 4. The geopotential fields by day 0 (a), 15 (b), 30 (c), and 45 (d) which was obtained through the time integration of the
shallow water spectral model with the initial condition of shallow-water Rossby-Haurwitz wave (n,m)=(4,4). The amplitude of
the wave and the strength of the superrotation background flow are K'=7.848 x 10°C)" and ©=7.848 x 10°Q™ in nondimen-
sional unit, respectively. Contour interval is 0.025, and positive (negative) values are in solid (dashed) lines.

The R-H wave is known to become unstable when
the amplitude is sufficiently large (Baines, 1976;
Hoskins, 1973; Thuburn and Li, 2000). In general, the
stability decreases as the scale becomes smaller. Even
the larger scale R-H wave has been proved to be
unstable: For example, as shown by Thubum and Li
(2000) through numerical simulations using various
models, the R-H wave (n,m)=(5,4) which was used
by authors (Phillips, 1959; Williamson et al., 1992;
Cheong, 2006) was found to break down in case of
long time integration. The R-H wave used in this
study (n=m) has a sectoral structure, i.e., there is no
nodal point on meridian for the disturbance. This may
be a favorable condition for the stability because the
horizontal gradient of velocity for the sectoral mode is
smaller than the tesseral mode if the zonal wavenumber
is given the same.

To investigate the stability of the R-H wave and

associated balanced field, the shallow water spectral
model was time integrated for 50 days. The integration
period of 50 days was found to be sufficient for this
purpose (Thuburn and Li, 2000), because the amplitude
of the unstable disturbance develops exponentially
during the first 25 days and settles down to a nearly
steady amplitude beyond that. For direct comparison
with the results of Thuburn and Li (2000), the zonal
wavenumber four was chosen, ie., (nm)=(4,4). We
can determine whether the wave is stable or not by
inspecting the kinetic energy of the wave components
other than zonal wavenumber four. However, to check
the instability in more accurate way, it may be
desirable to see the amplitude of the wave
components which are related with the resonant triad
(Baines, 1976). The wave components corresponding
to the unstable resonant triad for (nm)=(44) is
(nm)=(3,2) and (n,m)=(6,2). In any case, if the R-
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H wave of interest is unstable, the smooth initial field
may appear in distorted structure for a long time-
integration. Therefore, we decided to simply monitor
the geopotential field to judge the instability.

Unlike the linear stability problem, we do not add
artificial disturbance to the R-H wave because we are
interested in the instability that grows from the
numetical disturbance which has the order of machine
rounding. As was proposed by Thuburn and Li
(2000), a hyper diffusion of V°® with the coefficient
as can dissipate the smallest scale resolved in the
model in 4 hours. The amplitude of the wave and the
strength of the superrotation background mean flow
are given the same as in Thuburn and Li (2000) to
facilitate direct comparison.

The result of time integration is presented in Fig, 4,
where the geopotential field by day 0, 15, 30, and 45
are illustrated. During time integration, . the total
kinetic energy remained almost in the constant value,
indicating stable time integration without numerical
overflow. As time elapses, the smooth geopotential
field undergoes gradual change into a rather complicated
structure which has evidently small scale disturbance
embedded on the larger scale resembling the initial R-
H wave. This clearly indicates that the initial wave
was not broken down, i.e., the stability of the R-H
wave. As was illustrated in Thuburn and Li (2000),
when the R-H wave is unstable the large-scale feature
is destroyed completely by the growing small-scale
disturbances which originated from the machine
rounding error.

Summary and Conclusions

In this study, the balanced geopotential field
associated with the sectoral R-H waves was presented
in analytical approach. The balanced field was
obtained by inverting the nonlinear divergence
equation with the time derivative being zero. The
geopotential field was found to be asymmetric with
respect to the equator, and it was expressed with six
zonal wavenumber components in the presence of the
inclination of the rotation axis. Comparison of the

analytical geopotential with that obtained by the
spherical harmonics spectral model showed a good
agreement between them with the normalized
difference whose order is close to the machine
rounding. The stability of the balanced field associated
with the sectoral mode of the R-H wave was
investigated in terms of the long-term time integration
using the spherical harmonics spectral model. From
the geopotential field which has maintained the large-
scale initial structure with small-scale disturbances
imbedded on it, the wave was found to be stable. The
results of the study indicate that the sectoral R-H
wave and the balanced field associated with it is more
useful than the first antisymmetric mode to validate a
numerical model in that they are more stable and of
sasymmetric structure about the equator.
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