• Title/Summary/Keyword: 재료시험

Search Result 4,166, Processing Time 0.031 seconds

Comparison of Removal Efficiencies by Filter Media Experiments under the Upward and Downward Influent Conditions (상향류 및 하향류의 유입 조건에 따른 여재의 제거효율 비교)

  • Kim, Ji Ah;Kim, Byeong Jun;Choi, I Song;Oh, Jong Min;Park, Jae Ro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.441-444
    • /
    • 2016
  • 본 연구에서는 유입수의 유입 방향을 달리 하였을 때 각 여재의 처리효율 차이점을 조사하고자 하였다. 실험재료는 제올라이트, 화산석, 발포 세라믹, 폴리에틸렌(Poly Ethylene) 4종의 여재이며 총 용적 31 L의 아크릴반응조에 각각의 여재를 충진하였고 각각 상향류 및 하향류의 흐름 방식을 적용하여 2차에 걸쳐 여과실험을 진행하였다. 제거효율은 유입수 대비 유출수의 농도 변화를 통하여 관찰하였고, 수질 측정은 SS, COD, T-N, T-P 네 항목으로 수질공정시험법에 의거하여 분석하였다. 실험 결과 제올라이트는 SS, COD, T-N항목에서 상향류를 적용한 여과에서 제거효율이 높은 경향을 보였다. 특히 T-N항목의 경우 상향류 조건에서 49.2%, 하향류 조건에서 34.4%의 제거효율을 나타내 흐름조건별 제거효율에 가장 큰 격차를 보였다. 화산석의 경우 SS, COD, T-N항목은 흐름방식에 따른 제거효율에 주목할 만한 차이를 드러내지 않았으나 예외적으로 T-P항목만 상향류 조건에서 24.2%, 하향류 조건에서 15.9%의 제거효율을 나타냄으로써 상향류 조건에서 8.3% 높은 제거효율을 얻었다. 발포 세라믹 여재는 하향류를 적용한 여과에서 제거효율이 우세한 경향을 보였으며 특히 COD 항목의 경우 상향류 조건에서보다 하향류 조건에서 제거효율이 7.5% 향상된 결과를 얻었다. 폴리에틸렌 여재는 전반적으로 유입 조건에 따른 경향성을 나타내지 않았으나 예외적으로 SS항목의 경우 하향류 조건에서보다 상향류 조건을 적용한 여과에서 7.9% 높은 제거효율을 얻었다.

  • PDF

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

An Experimental Research About Settling and Consolidation Characteristic of Dredged Soil in West Coast (서해안 준설토의 침강압밀특성에 관한 실험적 연구)

  • Lee, Seung-Ho;Lee, Jeong-Hak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.29-36
    • /
    • 2011
  • In this study, settling experiment was performed about cohesive and sandy soils among representative sample expected to dredge and dump for analysis of settling and consolidation characteristic. The analysis showed the definite difference between cohesive soils and sandy soils of relationships with settling and consolidation coefficient, a water content, interfacial heights. But directly after a dredged reclamation, prediction results about a initial volume change showed that cohesive soil of a water content change was decreased rapidly as time goes by, but sandy soils made no difference in a water content change. Results were compared and analyzed with the settling and consolidation coefficient and a initial settling velocity by real soil amounts for a feasibility check about test conditions applied to these experiment: we judge that test conditions are appropriate, each material by such these analyses suggests the scope of settling and consolidation coefficient, average and the representative relational formula.

Comparative study of flexural strength of temporary restorative resin according to surface polishing and fabrication methods (표면연마와 제작방법에 따른 임시 수복용 레진의 굽힘강도에 관한 비교 연구)

  • Lim, Jae-Hun;Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Purpose: The purpose of this study is to investigate the effect of surface polishing and fabrication method on the flexural strength of temporary restorative resin. Materials and Methods: Each of four fabrication methods was used to make 30 temporary restorative resin specimens and the specimens were divided into two groups depending on whether they were polished by mechanical polishing. Specimens were stored in 37℃ thermostat for 24 hours. Flexural strength was measured using a universal testing machine (UTM). The data obtained through the experiment were analyzed with Two-way ANOVA, Tukey's HSD test and Paired t-test. Results: CAD/CAM milling group showed the highest flexural strength regardless of surface polishing. In decreasing order, the flexural strength of the other fabrication method group was as follows SLA 3D printing, DLP 3D printing, and Conventional method group. Conclusion: Surface polishing did not affect flexural strength of the temporary restorative resin (P > 0.05). However, there were statistically significant differences in flexural strength depending on fabrication method (P < 0.05).

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere (다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구)

  • Hur, Sung Kyu;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2021
  • Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Comparison of Bond-Slip Behavior and Design Criteria of High Strength Lightweight Concrete with Compressive Strength 50 MPa and Unit Weight 16 kN/m3 (압축강도 50 MPa, 단위중량 16 kN/m3 고강도 경량 콘크리트 부착-슬립 거동의 설계기준과의 비교)

  • Lee, Dong-Kyun;Lee, Do-Kyung;Oh, Jun-Hwan;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.168-175
    • /
    • 2022
  • With the recent development of nanotechnology, its application in the field of construction materials is continuously increasing. However, until now, studies on the bond characteristics of concrete and rebar for applying high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of 16 kN/m3 to structural members are lacking. Therefore, in this paper, 81 specimens of high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of about 16 kN/m3 were fabricated and a direct pull-out tests were performed. The design code for the bond strength of ACI-408R and the experimental results are shown to be relatively similar, and as a result of the CEB-FIP and modified CMR bond behavior models through statistical analysis, it is shown to describe well on average.

Nonlinear Rheological Properties of Endothelial Cell Laden-cellulose Nanofibrils Hydrogels (내피세포가 배양된 나노셀룰로오스 하이드로겔의 비선형 유변물성 분석)

  • Song, Yeeun;Kim, Min-Gyun;Yi, Hee-Gyeong;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Cellulose nanofibrils (CNF) based on wood pulp fibers are gained much attention as part of biocompatible hydrogels for biomedical applications such as tissue engineering scaffolds, biomedicine, and drug carrier. However, CNF hydrogels have relatively poor mechanical properties, impeding their applications requiring high mechanical integrity. In this work, we prepare 2,2,6,6-tetramethylipiperidin-oxyl (TEMPO) oxidated cellulose nanofibrils hydrogels mediated with metal cations, which form the metal-carboxylate coordination bonds for enhanced mechanical strength and toughness. We conduct the large amplitude oscillatory shear (LAOS) test and Live/dead cell assay for obtaining nonlinear viscoelastic parameters and cell viability, respectively. In particular, the cell proliferation and viability change depending on the type of metal salt, which also affected the rheological properties of the hydrogels.

Characteristics of High-viscosity Grouting Materials for Rock Joint Reinforcement of Deep Tunnel (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 재료의 특성)

  • Yoon, Inkook;Moon, Junho;Lee, Junsu;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.59-63
    • /
    • 2021
  • This study presented the characteristics and additive effects of the grout with mixing ratio for developing of high-efficiency grouting technology under high depth conditions. The laboratory investigation were conducted with Portland cement (OPC) and micro cement (S8000-E) including viscosity experiments, particle size analysis experiments, Gel-Time experiments and uniaxial compressive strength experiments. As a result of the viscosity experiment, it was shown that OPC is advantageous in terms of viscosity, but S8000-E is suitable when considering the passage of rock joint intervals through particle size analysis. The Gel-Time experiment shows that it is not that difficult with injection as a grout material even when silica fume (SF) was applied. The strength of the cured material is improved as increase in the content of silica fium (SF). Within the range of the study, the optimal mixing ratio obtained through various experiments is S8000-E, w/c=70%, silica fium (SF)=6%, and 7 days.

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.