DOI QR코드

DOI QR Code

Comparison of Bond-Slip Behavior and Design Criteria of High Strength Lightweight Concrete with Compressive Strength 50 MPa and Unit Weight 16 kN/m3

압축강도 50 MPa, 단위중량 16 kN/m3 고강도 경량 콘크리트 부착-슬립 거동의 설계기준과의 비교

  • Lee, Dong-Kyun (Dept. of Civil & Environmental Engineering, Gachon University) ;
  • Lee, Do-Kyung (Dept. of Civil & Environmental Engineering, Gachon University) ;
  • Oh, Jun-Hwan (Dept. of Civil & Environmental Engineering, Gachon University) ;
  • Yoo, Sung-Won (Dept. of Civil & Environmental Engineering, Gachon University)
  • 이동균 (가천대학교 토목환경공학과) ;
  • 이도경 (가천대학교 토목환경공학과) ;
  • 오준환 (가천대학교 토목환경공학과) ;
  • 유성원 (가천대학교 토목환경공학과)
  • Received : 2022.05.30
  • Accepted : 2022.06.16
  • Published : 2022.06.30

Abstract

With the recent development of nanotechnology, its application in the field of construction materials is continuously increasing. However, until now, studies on the bond characteristics of concrete and rebar for applying high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of 16 kN/m3 to structural members are lacking. Therefore, in this paper, 81 specimens of high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of about 16 kN/m3 were fabricated and a direct pull-out tests were performed. The design code for the bond strength of ACI-408R and the experimental results are shown to be relatively similar, and as a result of the CEB-FIP and modified CMR bond behavior models through statistical analysis, it is shown to describe well on average.

최근 나노기술의 발달로 건설재료분야에 이의 적용이 지속적으로 증가하고 있는 실정이다. 하지만 현재까지는 압축강도 50 MPa, 단위중량 16 kN/m3 정도의 고강도 경량 콘크리트를 구조부재에 적용하기 위한 콘크리트와 철근의 부착 특성에 관한 연구가 부족한 실정이다. 따라서 본 논문에서는 압축강도 50 MPa, 단위중량 16 kN/m3 정도의 고강도 경량 콘크리트 81개의 시편을 제작하여 직접 인발 부착실험을 수행하였고, 실험결과와 현행 설계기준과 비교하여 부착특성을 평가하였다. ACI-408R의 부착강도 산정식과 실험결과는 비교적 유사한 것으로 판단되며, 통계분석을 통해 CEB-FIP, 수정된 CMR 부착거동 모델을 산정한 결과, 평균적으로 잘 묘사하는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 22NANO-C156177-03) 및 2019년도 가천대학교 교내연구비 지원(GCU-2019-0307)으로 수행되었음.

References

  1. ACI 408R-03. (2003). Bond and Development of Straight Reinforcing Bars in Tension, ACI Committee 408, 49.
  2. Balazs, G.L. (1993). Cracking Analysis Based on Slip and Bond Stresses, ACI Materials Journal, 90(4), 340-348.
  3. Cosenza, E., Manfredi, G., Realfonzo, R. (1995). Analytical modelling of bond between FRP reinforcing bars and concrete, non-metallic(FRP) reinforcement for concrete structures, In Proceedings of the Second International RILEM Symposium (FRPRCS-2), University of Naples, Naples, Italy, 165-171.
  4. Eligehausen, R., Popov, E., Bertero, V. (1983). Local bond stress-slip relationships of deformed bars under generalized excitations, University of California, Berkeley, Calif, 83(23).
  5. Jung, S.W. (2010). Standardization Technology for The Environmental-Friendly Utilization of Pond Ash Technical Report, R-2007-2-151, Korea Conformity Laboratories, Seoul, 1-15 [in Korean].
  6. Orangun, C., Jirsa, J., Breen, J. (1977). A reevaluation of test data on development length and splices, ACI Structural Journal, 74(3), 114-122.
  7. Sim, J.I., Yang, K.H. (2010). Air content, workability and bleeding characteristics of fresh lightweight aggregate concrete, Journal of the Korea Concrete Institute, 22(4), 559-566. https://doi.org/10.4334/JKCI.2010.22.4.559
  8. Sim, J.I., Yang, K.H. (2011). Mechanical properties of lightweight aggregate concrete according to the substitution rate of natural sand and maximum aggregate size, Journal of the Korea Concrete Institute, 23(5), 551-558. https://doi.org/10.4334/JKCI.2011.23.5.551
  9. Taerwe, L., Matthys, S. (2013). Fib Model Code for Concrete Structures 2010, The International Federation for Structural Concrete(fib), Lausanne, Switzerland, 244.