DOI QR코드

DOI QR Code

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere

다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구

  • Hur, Sung Kyu (Reliability Test Center of VITZRO CELL) ;
  • Lim, Soo A (Dept. of Pharmaceutical engineering, Hoseo Univ.)
  • 허성규 (비츠로셀 신뢰성 시험 팀) ;
  • 임수아 (호서 대학교 제약 공학과)
  • Received : 2021.05.14
  • Accepted : 2021.07.20
  • Published : 2021.08.31

Abstract

Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.

리튬/유황 전지 반응에서 리튬-폴리설파이드(Lithium polysulfide)는 사이클이 반복될수록 전해액에 해리되어 전지 수명을 저하시키는 큰 원인으로 작용한다. 액체 상태인 리튬-폴리설파이드가 전해액에 용해되지 않도록 유황을 담지하고 리튬-폴리설파이드의 흡착을 유도, 추가로 전도도까지 높일 수 있는 비표면적이 큰 다공성 탄소를 모색했다. 본 논문에서는 비표면적이 큰 다공성 탄소 구체를 얻기 위해 추가로 KOH 처리를 통해 1939 m2/g의 탄소 구체를 2200 m2/g으로 높였다. 또한, 유황과의 열처리를 통해 75wt%의 유황이 함유된 탄소 유황 화합물을 만들어 양극재료 사용가능성에 대한 물질 분석을 진행했다. Reference (622; 유황: 60%, 도전재: 20%, 바인더: 20%) 파우치 셀과 75 wt%의 탄소 유황 화합물을 이용하여 만든 파우치 셀의 전기화학적 특성 분석을 진행하였다. 이는 50 사이클 기준으로 Reference 대비 20%의 수명 증가와 10%의율 특성 향상을 보였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1G1A1010154).

References

  1. J. M. Tarascon and M. Armand, 'Issues and challenges facing rechargeable lithium batteries' Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
  2. M. Armand and J. M. Tarascon, 'Researchers must find a sustainable way of providing the power our modern lifestyles demand' Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
  3. E. Plichata, M. Salomon, S. Slane, M. Uchiyoma, B. Chua and W. B. Ebner, 'Rechargeable Li/LixCoO2 cell' J. Power Source, 21, 25-31 (1987). https://doi.org/10.1016/0378-7753(87)80074-5
  4. J. Dhan, U. Von Sacken, C. Michel, 'Structure and electrochemistry of Li1GyNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure', Solid State Ionics, 87, 44-53 (1990). https://doi.org/10.1016/0022-4596(90)90063-4
  5. J. Shim, K. A. Striebel, 'Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature', J. Power Sources 112, 222-230 (2002). https://doi.org/10.1016/S0378-7753(02)00363-4
  6. I. Masashi, K. Manabu and M. Masayuki, 'Control of lithium metal anode cycleability by electrolyte temperature' J. Power Source, 81, 217-220 (1999). https://doi.org/10.1016/S0378-7753(98)00213-4
  7. T. Tetsu, T. Makoto and O. Noborn, 'Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation' Electrochimica Acta, 46, 1201-1205 (2001). https://doi.org/10.1016/S0013-4686(00)00706-4
  8. B. Scrosati, F. Croce and S. panero, 'Progress in lithium polymer battery R&D' J. Power Source, 100, 93-100 (2001). https://doi.org/10.1016/S0378-7753(01)00886-2
  9. C. W. Kwon, S. E. Cheon, J. M. Song, H. T. Kim, K. B. Kim, C. B. Shin and S. W. Kim, 'Characteristics of a lithium-polymer battery based on a lithium powder anode' J. Power Source, 93, 145-150 (2001). https://doi.org/10.1016/S0378-7753(00)00557-7
  10. D. R. Sahalub, A. E. Foti and v. H. Smith, Jr. 'Molecular orbital study of structural changes on oxidation and reduction of S3, S4, S6, and S8' J. Am. Chem. Soc, 100, 7847-7859 (1978). https://doi.org/10.1021/ja00493a011
  11. C. R. Bansal, J. B. Donnet, and F. Stoeckli, Marcel Dekker, 'A review of: Active Carbon.' New York Active carbon, PP482 (1988).
  12. B. M. Rao and J. A. Shropshire, 'Effect of Sulfur Impurities on Li/TiS2 Cells', J. Electrochem. Soc, 128, 5, 942-945 (1981). https://doi.org/10.1149/1.2127579
  13. Sang-Cheol Han, Min-Sang Song, Ho Lee, Hyun-Seok Kim, Hyo-Jun Ahn,Jai-Young Lee 'Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of LithiumOSulfur Rechargeable Batteries' J. Electrochem. Society, 150(7), A889-A893, 2003. https://doi.org/10.1149/1.1576766
  14. H. C. Foley, 'Carbogenic molecular sieves: synthesis, properties and applications', Microporous Mater, 4, 407-433 (1995). https://doi.org/10.1016/0927-6513(95)00014-Z
  15. Zhixin Ma,Takashi Kyotani,Akira Tomita, 'Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite', ChemComm, 38, 269-286 (2000).
  16. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda,'Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules' Chemistry of Materials, 8, 454-462 (1996). https://doi.org/10.1021/cm950381t