• Title/Summary/Keyword: 자유진동해석

Search Result 574, Processing Time 0.03 seconds

Flexural Stiffness and Characteristics of Vibration in CFT Truss Girder (CFT 트러스 거더의 휨강성 및 진동특성)

  • Chung, Chul-Hun;Song, Na-Young;Kim, In-Gyu;Jin, Byeong-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.19-30
    • /
    • 2009
  • The primary objective of the present study was to attempt to quantify the effect of the existing codes for CFT composite section on initial section flexural stiffness, based on the measured vibration frequency of CFT truss girders. The formulae for the initial flexural stiffness of the composite sections in the different codes are compared with the free vibration test results. The results of the free vibration test on the CFT truss girders are in good agreement with the analysis results when used in ACI formulae. The free vibration analysis of CFT truss girders for different f/L ratios was conducted to determine how the natural frequency of the CFT truss girder is affected by different f/L ratios. The presence of the f/L ratios in CFT truss girders alters its frequencies of vibration because of the global stiffness of the CFT girders. The frequency in horizontal modes decreases as the f/L ratio increases. However, the frequency in vertical modes increases as the f/L ratio increases.

Vibration Characteristics of Tapered Piles Embedded in an Elastic Medium (탄성매체에 근입된 변단면 말뚝의 진동 특성)

  • Oh, Sang-Jin;Kang, Hee-Jong;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.832-835
    • /
    • 2005
  • The free vibration of tapered piles embedded in soil is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically. The square tapered piles with one free and the other hinged end with rotational spring are applied in numerical examples. The lowest two natural frequencies are obtained over a range of non-dimensional system parameters: the rotational spring parameter, the embedded ratio, the foundation parameter, the width ratio of the contact area and the section ratio.

  • PDF

Free Vibration of Tapered Beams (변단면(變斷面) 보의 자유진동(自由振動) 해석(解析))

  • Lee, Byoung Koo;Oh, Sang Jin;Choi, Gyu Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.37-46
    • /
    • 1991
  • A method is developed for solving the natural frequencies and mode shapes of linearly variable tapered beams. The governing differential equation for the tapered beam is derived. Three kinds of cross sectional shape are considered in differential equation. The Runge-Kutta method and the determinant search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped, damped-clamped and free-damped end constraints are investigated in numerical examples. The lowest four nondimensional natural frequencies are obtained as functions of $d_b/d_a$. ratio. The effects of end constraints and cross sectional shapes on frequencies are analyzed and typical mode shapes are also presented.

  • PDF

Planar Free Vibrations of Catenary Arcs (현수 곡선부재의 면내 자유진동 해석)

  • Lee, Byoung Koo;Oh, Sang Jin;Suh, Ju Suhk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.19-28
    • /
    • 1990
  • The main purpose of this paper is to present both fundamental and some higher natural frequencies of catenary arcs. The differential equations governing planar free vibrations for these arcs are derived, in which the rotatory inertia is included, as non-dimensional forms and solved numerically to obtain frequencies and mode shapes. The hinged-hinged and clamped-clamped end constraints are applied in numerical examples. The lowest four natural frequencies are reported as the functions of non -dimensional system parameters; the slenderness ratio and the rise to span length ratio. The effects of rotatory inertia on natural frequencies are reported and some typical mode shapes are also presented.

  • PDF

Analytical and Numerical Study on Saptially Coupled Free Vibration of Nonsymmetric Thin-Walled Curved Girders (비대칭 단면을 갖는 박벽곡선보의 자유진동에 관한 수치적 및 해석적 연구)

  • Kim, Nam Il;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.423-432
    • /
    • 2002
  • This study presented analytical and numerical solutions for spatial free vibration of nonsymmetric thin-walled circular curved beams. The closed-form solutions were obtained for in-plane free vibration analylsis of monosymmetric curved beams. Likewise, two types of thin-walled curved beam elements were developed using the third and the fifth order Hermitian polynomials. In order to illustrate the accuracy and usefulness of the present method, this study presented analytical and numerical solution and compared these with the results using the ABAQUS's shell elements. In particular, effects of the thickness-curvature as well as the inextensional condition were investigated on the free vibration of curved beams with nonsymmetric sections.

Analysis of Flexural Vibration of Rhombic Plates with Combinations Clamped and Free Boundary Conditions Including the Effect of Corner Stress Singularities (모서리 응력특이도의 영향을 포함한 고정 또는 자유 경계조건의 조합을 고려한 마름모꼴 평판의 휨 진동 해석)

  • 한봉구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of rhombic plates having all combinations of clamped and free edge conditions. The prime focus here is that the analysis explicitly considers the bending stress singularities that occur in the two opposite, clamped-free corners having obtuse angles of the rhombic plates. Accurate non-dimensional frequencies and normalized contours of the vibratory transverse displacement are presented for rhombic plates having a large enough obtuse angle of 165$^{\circ}$, so that a significant influence of clamped-free corner stress singularities may be understood.

  • PDF

Free Vibration Analysis of Monosymmetric Thin-walled Circular Curved Beam (일축대칭 단면을 갖는 박벽 원형 곡선보의 자유진동 해석)

  • 장승필;김문영;민병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.57-68
    • /
    • 1998
  • For free vibration of monosymmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for free vibration behaviors of simply supported thin-walled curved beam element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the FEM using straight beam element.

  • PDF

Analysis of Vibration and Stress for Bed Structure of Engine Dynamo Tester (엔진 다이나모 시험기 베드 구조물의 진동 및 구조응력해석)

  • 이영신;강이석;김동진;김영대;김의석
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.173-185
    • /
    • 1998
  • 본 연구에서는 자동차엔진 및 트랜스미션 성능시험을 위한 다이나모 베드구조물을 분석하고 설계하였다. 해석상에 고려된 베드구조물은 Ⅰ형강 구조물, 보강된 박스구조물 그리고 블록구조물로 제작되었으며, 시험을 위한 엔진 및 트랜스미션은 베드상판에 장착된다. 엔진구동시 회전에 의한 진동이 발생된다. 공진을 피하기 위해 베드구조는 충분한 구조적 일체성을 가져야 한다. 본 연구에서는 베드 구조물의 응력, 변위 그리고 자유진동해석이 ANSYS Code를 이용한 유한요소해석이 수행되었다. Ⅰ형강 구조형 베드 구조물에서 최대 응력은 23.2MPa에서 90.3MPa까지 나타났으며, 최대 처짐은 0.25㎜에서 0.92㎜까지 나타났다. 박스 구조형 베드 구조물에서 최대 응력은 0.028MPa에서 0.259MPa까지 나타났으며, 최대 처짐은 0.031㎜에서 0.413㎜까지 나타났다. 그리고 박스구조형 베드 구조물에서 최대 처짐은 0.92MPa에서 2.15MPa까지 나타났으며, 최대 처짐은 1.1㎜에서 2.7㎜까지 나타났다. 모든 구조물이 응력과 처짐 값에서 매우 안정적인 범위 내에서 발생됨을 볼 수 있었다. 구조진동해석에서 Ⅰ형강 베드구조물의 고유진동수는 112.03㎐에서 141.66㎐까지의 범위에 발생되었다. 박스 구조형 베드구조물에서의 고유진동수는 396.93㎐에서 755.11㎐까지의 범위에서 발생되었다. 마지막으로 블록구조형 베드구조물에서는 266.51㎐에서 244.67㎐까지의 고유진동수를 찾을 수 있었다. 모든 구조물에서 베드구조물의 무게증가에 따른 기본진동수는 증가된다. 베드시스템의 지지기초시스템은 2자유도계 시스템으로 설계되었으며, 다양한 질량변화 및 스프링상수 변화에 따른 진동해석을 수행하였다. 질량비가 증가될수록 고유진동수는 크게 감소되며, 스프링상수가 증가될수록 고유진동수는 감소된다.

  • PDF

Free Vibrations of Circular Uniform Strips Resting on Two Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 원호형 등단면 띠기초의 자유진동)

  • Lee, Jong-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.125-134
    • /
    • 2009
  • This paper deals with the free vibrations of circular strip foundations which have uniform solid rectangular cross-section. The ground which supports circular strips was modeled as the two parameter elastic foundation. Differential equations governing the flexural-torsional free vibrations of circular strips supported by such foundation were derived, and solved numerically for obtaining the natural frequencies and mode shapes. Boundary condition of free-free ends was considered for numerical examples. Four lowest natural frequencies according to the variations of five system parameters i.e. subtended angle, depth ratio, contact ratio, elasticity ratio and soil parameter are reported in the non-dimensional forms. Also, typical mode shapes of both deformations and stress resultants are presented in the figures. Experiment was conducted for validating the theory developed in this study.

Spatial Free Vibration and Stability Analysis of Thin-Walled Curved Beams with Variable Curvatures (곡률이 변하는 박벽 곡선보의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.321-328
    • /
    • 2000
  • An improved formulation of thin-wailed curved beams with variable curvatures based on displacement field considering the second order terms of finite semitangential rotations is presented. From linearized virtual work principle by Vlasov's assumptions, the total potential energy is derived and all displacement parameters and the warping functions are defined at cendtroid axis. In developing the thin-walled curved beam element having eight degrees of freedom per a node, the cubic Hermitian polynomials are used as shape functions. In order to verify the accuracy and practical usefulness of this study, free vibrations and buckling analyses of parabolic and elliptic arche shapes with mono-symmetric sections are carried out and compared with the results analyzed by ABAQUS' shell element.

  • PDF