DOI QR코드

DOI QR Code

Flexural Stiffness and Characteristics of Vibration in CFT Truss Girder

CFT 트러스 거더의 휨강성 및 진동특성

  • 정철헌 (단국대학교 토목환경공학과) ;
  • 송나영 (단국대학교 토목환경공학과) ;
  • 김인규 ((주)대우건설 기술연구원 토목연구팀) ;
  • 진병무 ((주)대우건설 기술연구원 토목연구팀)
  • Received : 2008.08.18
  • Accepted : 2008.11.12
  • Published : 2009.01.31

Abstract

The primary objective of the present study was to attempt to quantify the effect of the existing codes for CFT composite section on initial section flexural stiffness, based on the measured vibration frequency of CFT truss girders. The formulae for the initial flexural stiffness of the composite sections in the different codes are compared with the free vibration test results. The results of the free vibration test on the CFT truss girders are in good agreement with the analysis results when used in ACI formulae. The free vibration analysis of CFT truss girders for different f/L ratios was conducted to determine how the natural frequency of the CFT truss girder is affected by different f/L ratios. The presence of the f/L ratios in CFT truss girders alters its frequencies of vibration because of the global stiffness of the CFT girders. The frequency in horizontal modes decreases as the f/L ratio increases. However, the frequency in vertical modes increases as the f/L ratio increases.

본 연구에서는 CFT 트러스 거더의 자유진동실험 결과를 토대로 주요 코드에서 규정하고 있는 CFT(concrete filled tube) 합성단면의 초기 휨강성 산정식을 평가하였다. 각 코드에서 규정하는 합성단면 초기 휨강성 산정식에 의한 CFT 트러스 거더의 자유진동 해석결과와 실험결과를 비교하였으며, 그 결과 CFT 트러스 거더의 자유진동실험 결과는 ACI의 휨강성 산정식을 적용하는 경우의 해석결과와 잘 일치하는 결과를 보였다. 이를 반영하여 f/L비 변화에 따른 CFT 트러스 거더의 자유진동해석을 수행하여 f/L비가 CFT 거더의 고유진동수에 미치는 영향을 분석하였다. CFT 트러스 거더의 f/L비는 거더의 전체강성에 영향을 주기 때문에 고유진동수를 변화시킨다. 수평모드에서의 고유진동수는 f/L비가 증가하면 감소하지만, 연직 모드에서의 고유진동수는 f/L비가 증가하면 선형적으로 증가하는 경향을 보였다.

Keywords

References

  1. 정철헌, 김종석(2007) 콘크리트 충전 원형 강관의 휨 거동, 대한토목학회논문집, 대한토목학회, 제27권 제4A호, pp. 553-559.
  2. ABAQUS User's Manual (2002) Release 6.3, Hibbitt, Karlsson & Sorensen, Inc.
  3. AISC (1999) Load and resistance factor design specification for structural steel buildings, Chicago: American Institute of Steel Construction Inc.
  4. American Concrete Institute. (2002) Building code requirements for reinforced concrete (ACI, 318-02) and Commentary(ACI 318R-02).
  5. Architectural Institute of Japan (1997) Recommendations for design and construction of concrete filled steel tubular structures, October, AIJ.
  6. BS 5400, Part 5. (1979) Concrete and Composite bridges, British Standards Institution.
  7. Eurocode 4. (1994) Design of composite steel and concrete structures, Part 1.1, General rules and rules for building, EN1994.
  8. Lu, Y.Q. and Kennedy, D.J.L. (1994) The flexural behaviour of concrete filled hollow structu- ral sections. Can. J. Civil Eng. pp. 111-130.
  9. Han, L.-H. (2004) Flexural behaviour of concrete-filled steel tubes, Journal of Constructional Steel Research, Vol. 60, pp. 313-337. https://doi.org/10.1016/j.jcsr.2003.08.009
  10. Elchalakani, M., Zhao, X.L., and Grzebieta, R.H. (2001) Concrete-filled circular steel tubes subjected to pure bending, Journal of Constructional Steel Research, Vol. 57, pp. 1141-1168. https://doi.org/10.1016/S0143-974X(01)00035-9
  11. Wheeler, A.T. (2000) Thin-walled steel tube filled with high strength concrete in bending, Engineering Foundation Conferences, Composite Construction IV, Vol. 2, Banff, Alberta, Canada.
  12. Gho, W.-M. and Dalin Liu (2004) Flexural behaviour of high-strength rectangular concrete filled steel hollow sections. Journal of Constructional Steel Research, Vol. 60, pp. 1681-1696. https://doi.org/10.1016/j.jcsr.2004.03.007