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Analysis of Flexural Vibration of Rhombic Plates with Combinations
Clamped and Free Boundary Conditions
Including the Effect of Corner Stress Singularities
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ABSTRACT

An accurate method is presented for fliexurdl vibrations of rhombic plates having all combinations of clamped and
free edge condifions. The prime focus here is that the analysis explicitty considers the bending siress singularities that
occu in the two opposite, clampedfree comers having obtuse angles of the rhombic plates. Accurate non-
dimensional frequencies and normalized contours of the vibratory fransverse displacement are presented for rthombic
plates having a large enough obfuse angle of 165°, so that a significont influence of clamped-ree comer stress

singularities may be understood.

Key words : Rz method, free vibration, comer stress singularity, thombic plate, frequencies, bending

1. Introduction

The evolution of the active research work
on the free vibration of skewed (rhombic)
plates with various combinations of clamped
and free edge condition is described in a
summarizing monograph® and in subsequent
review articles.®® More recent comprehensive
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treatments of the subject problem have been
offered by Raju and Hinton®, Ganeson and
Rao.” Raju and Hinton® reported a large
amount of vibration solutions for thin and
thick, clamped skewed plates using nine-node
isoparametric Mindlin plate finite elements.
Ganeson and Rao® used a variational approach
to examine the natural vibrations of thick
skewed Mindlin plates with various combi-
nations of clamped and free edge conditions,

except those forming cantilevered ones. Liew
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et. al.” examined the flexural vibrations of thick
skewed plates having clamped-free edges
using the Ritz method with the dynamical
energies derived based on the Mindlin first-
order shear deformation theory.

What is missing in the collective findings
in the previous work®@? is the effect of
the bending stress singularities which exists
at a clamped-free comer having an interior
angle larger than 90° (i.e., obtuse). Analysts
must explicitly consider such corner stress
singularities in order to avoid erroneous
results for highly skewed rhombic plates,
particularly for the lower frequency modes.
Fundamental information about the unbounded
stresses which exist at obtuse corners in
plate flexure problems involving static loads
was explained in a paper by Williams,®
Along these same lines, the importance of
including re-entrant corner stress singularities
on the natural vibration frequencies of
cantilevered skewed plates” and simply suppor-
ted rhombic plates™ has been demonstrated
in previous work.

In this paper, the bending stress singularities
that exist at the two obtuse interior corners
of rhombic plates having all possible combi-
nations of clamped and free edges are taken
into account explicitly. The dynamic energies
are constructed using classical plate theory.
Displacements are assumed as a mathematically
complete set of algebraic polynomials and
two admissible sets of corner functions. The
latter functions account for the singular
behavior of bending stresses at the two
corners having obtuse angles. The Ritz method
is used to minimize the dynamic energies to
obtain upper bound approximate flexural
frequencies and mode shapes as close to the
exact ones, as sufficient numbers of polynomials

and comer functions are retained. The accuracy
of non-dimensjonal frequencies obtained by
the present method is established through a
convergence study explicitly showing the
influence of the corner functions. Additional
comparisons with previously published frequency
data are made to elucidate the importance
of considering corner stress singularities in
obtaining accurate flexural vibration data for

rhombic plates.

2. Method of analysis

Shown in Fig. 1 is a rhombic plate having
typical length, ¢, and diagonal half-lengths, a
and b, measured along the Cartesian axes, x and
v, respectively. The vibratory transverse displace-
ment of the rhombic plate is w= w(x,y,8,
where t is time. In using the Ritz method,
one assumes that the rhombic plate undergoing
undamped free vibration interchanges its

® @
I
1 Il of N2
a o 4 ¥
n
@ ® b

Fig. 1 Geometry of rhombic plate
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dynamic energy from an uniquely potential
condition at its maximum amplitude(zero
velocity) to an uniquely kinetic condition at
its maximum velocity(zero amplitude). At a
circular frequency of vibration ®, the temporal
dependence of the transverse displacement w
is assumed to be simple harmonic:
jot

w(x, y,t)=W(x,y)e

@
where e is the exponential function and
j=v-1,

Considering this assumption one can obtain
the maximum strain energy V.., due to bending
during a vibratory cycle upon taking ™ as
unity:

v, +2 aa

H[ b+, F —20- Vi

@
where dA = dxdy, D= Er*/12(1—)?) is the
flexural rigidity, h is the plate thickness(not
shown in Fig. 1), E is Young's modulus, v
is Poisson’s ratio, and y,, x,, and y,, are

the maximum bending and twisting curvatures:

9*wW
axdy (2a)

o'W
ayz ’

_o'W
ot

Xy = wy =
Similarly, the maximum kinetic energy can

be expressed as

pw 2
Tax = )| ,JW"dA
max 9 J.,[ A (3)
where p is the mass per unit area of the
plate.
In the present Ritz approach, displacement
trial functions are assumed as

Wi, y) =W, (x, )+ W, () +W, (x,)

@

where W, is an admissible and mathematically
complete set of algebraic polynomials, and W

and We, are two sets of comer functions, which
adhere to the vanishing displacement and which
account for the singular bending stress behavior
at the obtuse corners 1 and 2, respectively(see
Fig. 1). It should be noted that a clamped-free
cormer has singular bending stresses when the
included angle («) formed by the two edges at
corners 1 and 2 is larger than approximately
%° (ie, obtuse)"™ No such unbounded stresses
exist at either a clamped-clamped or free-free
obtuse corner for @<180° W

Four combinations of rhombic plate edge
conditions are examined, which are hereafter
described as CFFF, CFFC, CFCF, and CFCC
(see Fig. 2, whereby only those edges which
are free have been identified by the letter
F). These edge conditions are identified
according to the numbered edges shown in
Fig. 1 (e.g, C-F-C-F corresponding to edges
1-2-3-4 as shown).

CFFF CFFC CFCF

CFCC

Fig. 2 Rhombic plates with clamped and edges

Let G; correspond to the equation of the jth
edge of the rhombic plate shown in Fig. 1.
Thus,

b

Gi=b— y+~2x G2=b+y+—ax,
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The polynomials 1, are assumed as

CFEF plate:  W,(x,y)= Go (6a)
CFCF plate: W, (%)) =G/G;¢ (6b)
CFFC plate: W, (x,»)= G{G}o (6¢)
CFCC plate: W, (%3 =G/G;G9 (6d)
where
M N
= A m_.n
¢ %Z et (6€)

and Apn are undetermined coefficients, m, n
=01, 2 - and W, satisfies the vanishing
displacement and normal slope conditions
on all the clamped boundaries as required.

The corner functions e (=1,2) may be

written as

CFFF plate: W =&, W, (xy=0 (7a)

CFCF plate: We 0 =G38,, W, (63 =G,
(7b)
CFFC plate: Wa (60 =Gi%,, W, (x,0)=G/%,

(7¢)

CFCC plate: We (%9 =G3G&,, W, (x.y)=0
(7d)

where

K
éik = Z Bik W"ik (x, )’)
k=1

in which By are arbitrary coefficients, and

We, are biharmonic functions which satisfy

the clamped-free boundary conditions along

two radial edges of a sector plate domain."”

For each of the plate edge conditions, Wctk is

the K function of the set:

CFFF and CFCC plates:
W (7,8,) = 7! [sin(h, +1)8, + g, cos(h, +1)8,
+ g, sin(h, —1)8, + g, cos(A;, — 19, ]
(8a)
CFCF plate:
W, (7.8)= M [sin(A, +1)8, + g, cos(h, +1)6,
+ g, sin(h, ~1)8; + g, cos(h, —1)8, ]

(i=1,2) (8b)

CFEC plates:
W2 (7,8)) = " [sin(h, +18, + g, cos(h, + 18,
+ g, sin(A, —1)8, + g5 cos(A, —1)6, ]
(8c)
W,, (r2,8,) = r*"![sin(h, +1)8, — g, cos(h +1)8,

+ g, sin(h, ~1)8, — g5 cos(h, —1)8, ]
(8d)

g =l g =t g =t
T8, 2y, 'S, (9a)

My, = (hy =17, sin(h, +])%—(}“k +1,, cos(h, +1)%sin(7»k -l
. a
+(Ay -hy, sin(A, +1)EC°S(M -Do
(9b)
o o
Hy, =y +1)|:Y1k cos(A, —I)E—yzk cos(h; —I)Ecos(k,( +ha

s, sin(h, —1)%sin(xk + l)a]

%)
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Hy, =y +1)[ylk sin( _1)%+Y2k sin(A, —1)%cos()~k + Do

—73, cos(hy —1)%sin(7»k +1)(xj|

(9d)

8, = (hy — DY, coslh +1)92f—(xk +1yy, sinQt, +I)%sin(kk -t

- (g =Dy, cOSOY, +1)%c050\.k ~Da

(%)
in which

Y SMV=DHGHY), Y, =R DV, 7, = =hv-1

()

In Egs. (8) and (9), the local polar coordinates
(r:,8,) originate at corners 1 and 2(Fig. 1),
and ¢ is the included angle of comer 1 and

2. In addition, the *« are the roots of the

characteristic equation:

4 —
(1-v)3+V)

sin A, o=
(10)

The functions Wffk, which are ordered by

Ay, are transformed to the global Cartesian
coordinates (x, v) through the following relations:

n =l +ay? +y?]” 8; = tan™ [Y(x"'a)'l]

9, =tan™ [y(x - a)_l]
(11)

= [(x—a)2 + yz]”2

The Ritz minimizing equations are formulated
by substituting Eqs. (4)-(9) and (11) into (2)
and (3) and taking the partial derivatives:

(Vmax - Tmax )’Am” =0, (Vmax - Tmax )’Bik =0 (12)
The results in a set of Euler-Lagrange equations

which are algebraic involving the constants

A, and B, . The vanishing determinant of
these equations yields a set of eigenvalues

(natural frequencies), expressed in terms of
the non-dimensional frequency parameter,

®a’Jp/D | which is particularly suitable for
the rhombic plate. The frequencies converge
monotonically from above to the exact
values, as sufficient number of terms in Eq.
(4) are used.

Eigenvectors involving the coefficients cons-
tants A,, and B, may be determined in the
usual manner by substituting the eigenvalues
back into the homogeneous equations. Nor-
of

shapes may be depicted on a x-y grid in the

malized contours the associated mode

rhombic plate domain once the eigenvectors
are substituted into Egs. (6e) and (7e).

3. Convergence studies and frequency
comparison

All of the frequency and mode shape
calculations in this work were performed on
an IBM/RISC-6000 Model 970 powerserver
with a Model 340 workstation cluster using
double precision(14 significant digit) arithmetic.
Table 1 describes a selected convergence study
for the first six non-dimensional frequencies

wa’\Jp/D of CFCF rhombic plates having

ba =3 (or a=143%). The (M+1)x(N+1)
number of polynomial terms (W,) shown in

Table 1 indicates M+1 terms retained in
the x-direction and N+1 terms retained in
the y-direction [see Egs. (6)]. The 2K number
of corner functions (W, =W, +W,,) define K
cormer functions used in Egs. (7) for each of
comers 1 and 2. Poissons ratio (v) has been
set to 0.3 in all calculations.

M3 M1z (S Me=) 1999.3
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Table 1 Convergence of frequency parameters @a’\p/D for a CFCF thombic plate (/2 = 3)

Mode | _COmer (M+1)x(N+1) polynomial terms (D)
No Functions

. We) 8x8 9x9 10Xx10 11X 12X12 13X%13 14X14
0 46725 4.6352 46068 45882 45757 4.5647 45592
4 45385 4.5336 4.5327 4.5319 45317 45315 45315
' 8 45340 4.5324 45320 45316 45315 45315 45314
12 45330 45320 45318 45315 45315 45314 45314

16 45318 | 45316 45314 | 45312 - — -—

20 45317 45314 -— -— — — —
0 47862 47273 4.6933 4.6658 4.6455 46320 46193
4 45790 45770 45760 45755 45752 45751 45750
5 8 4.5765 4.5758 45754 45752 45751 45750 45750
12 45760 4.57% 45753 4.5751 45750 45750 45749

16 4578 | 4573 | 45751 45749 — — -—

20 45751 45737 — — — — —
0 7.6092 7.5964 7.5929 7.5901 7.5875 7.5866 7.5845
4 7.5779 7.5717 7.5709 7.5705 7.5702 7.5701 75701
3 8 75728 75708 75704 75703 75701 75700 75700
12 75711 7.5701 7.570t 7.5701 7.5700 7.5700 75700

16 75104 | 75701 75700 | 55697 — — —

20 75701 75698 — — — — —
0 10.094 10.050 09745 9.9533 9.9311 99199 9.9069
4 99190 9.9091 0.8678 9.8672 0.8648 9.8646 9.8644
4 8 99108 9.9030 9.8665 9.8663 9.8645 9.8644 9.8643
12 9.87%9 9.8689 9.8649 9.8647 9.8644 9.8643 9.8643

16 08722 | 98669 | 98648 | 98645 — -— —

20 08675 | 9.8 — — — — -
0 13.282 12.623 12.477 12.355 12.296 12.257 12.228
4 12.594 12215 12.168 12.101 12.097 12.090 12.089
5 8 12.386 12.185 12141 12.098 12.094 12.089 12.089
12 12.289 12.153 12.131 12.095 12.094 12.089 12.089

16 12.119 12,101 12,091 12,090 — — —

20 12115 12,095 — o -— -~ -
0 15.240 15.078 14.983 14.910 14.861 14.828 14.799
4 14.747 14.728 14.709 14.702 14.699 14.697 14.696
6 8 14.731 14719 14.705 14,700 14.698 14.697 14.696
12 14.726 14715 14704 14.700 14.698 14.697 14.696

16 14.721 14707 14700 14697 - — -

20 14.703 14695 -— -— — - —

-— no results due to matrix ill-conditioning

The convergence of frequencies in Table 1
shows that by using polynomial terms alone
typically results in a relatively slow rate of
upper bound convergence of wa®V o/D  values
for the CFCF rhombic plates. Whereas, the rate

of convergence of wa® p/D is significantly
accelerated when a few comer functions are
added to the polynomials (depending on the
mode number and plate boundary conditions).
For example, using 100 polynomial terms (10
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x10) without corner functions to represent
the fundamental(lowest frequency) mode of
an CFCF plate with b/s=3 yields an error of
approximately 1.7% in the predicted frequency.
Increasing to 196 polynomial terms (14x14)
still results in an error of 0.6%. When the
trial set of 100 polynomials are supplemented
with 4 corner functions the predicted frequency
error reduces to a negligible amount of 0.03%.
Indeed, for the CFCF plate (Table 1), the exact
wa®V /D for the lowest frequency mode is
achieved to four significant digits with a
solution sizes as small as 9x9+20. It should
be noted that the CFCF case is the one of
the most challenging convergence studies
among the four cases analyzed here, and
that levels of solution accuracy similar to
that exhibited above may be seen in all
modes of the CFCC, CFFF, and CFFC plates.

For the CFCF, CFCC, CFFF, and CFFC rhom
bic plates, large gradients of the vibratory
stresses exist at the obtuse CF corners. The
vibratory stresses are, however, bounded near
the CC and FF corners. Previous studies"”
have shown that the moment stresses are
unbounded at a CF corner when approximately
@ > 95" and at a CC and FF corner when
a > 180°, which at the latter is valid for
sectorial rather than rhombic plates.

Table 2 is a summary of accurate rhombic
plate frequencies for the four possible combi-
nations of clamped and free edges. Listed
therein are the first five non-dimensional
frequencies wc™ p/D (c being the side length,
as shown in Fig. 1) of the CFCF, CFCC,
CFFF, and CFFC rhombic plates having skew
angles J(corner angles «)=15°(105"), 30°(120°),
45°(135%), 60°(150°), and 75°(165°). Accurate qua-
litative modeling of the singular stress pheno-
mena dictates the for large S(e), a considerable

number of corner functions are required at
corners 1 and 2 for the CFCF and CFFC
rhombic plates, and at corner 1 for the
CFCC and CFFF plates. Sufficient numbers of
polyromials ( ;) and comer functions (W) were
used to yield at least five significant digit
accuracy of the frequencies shown in Table
2 The converged solution sizes employed are
summarized in Table 3.

It may be seen in Table 2 that as the side
length (¢) remains constant wc™ p/D increases
with increasing B, and that the highest
frequency values are obtained for the CFCC
plates, which is to be expected. For all plates,
substantial changes in wc™V p/ D traceable to
plate skewness are most distinguishable for
45° < B < 75°, where one can observe increa-
singly greater frequency changes as the mode
number increases.

Frequency solutions for the square plates
(a=90°, B=0% which have been calculated
in the present analysis with no commer functions
(see Table 3), are lower upper-bound wc™ o/D
values compared to those values reported in
reference 12, which were obtained by employing
the Ritz method with beam -eigenfunction
approximation of the plates normal displace-
ment. Non-dimensional frequencies obtained
by the present method for the CFCF and
CFFF plates are compared in Table 4 with
those reported in a first-order shear deformable
Mindlin plate Ritz analysis.”) In the latter,
the plate thickness ratio (bh) was set to
1000, which is considered as very thin. As
expected for the square CFCF and CFFF plates
(a=90°, 8=0"), both the present and shear
deformable approximate methods converge
to the exact solution. Moreover, there appears
to be close agreement between the wc™V o/ D
values for «=105° (5=15°). For « > 105

M3 Mhs (S M9=) 1999.3
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Table 2 Frequency parameters wc™ o/D for rhombic plates with clamped and free edge conditions

Skew Angle(8) a bla Mode No. CFCF Cree CFFF CFFC

0° K° 1.000 1 22.168 23924 34711 6.9191
22.272) (24.020) (34917) (6.9421)

2 26.408 40.000 8.5073 23902
(26.529) (40.039) (8.5246) (24.034)

3 43.596 63.229 21.286 26.585
(43.664) (63493) (21.429) (26.681)

4 61.177 76.712 27.199 47.649
(61.466) (76.761) (27.331) (47.785)

5 67.181 80.579 30.959 62.705
(67.549) (80.713) 31.111) (63.039)

15° 105° 1.303 1 23.342 25,049 35813 6.4436
2 27.324 41689 8.6968 24.782

3 44,825 66.697 22.229 25254

4 64.488 76.150 26.333 47.510

5 70.349 88.624 33.861 64.276

X° 120° 1732 1 27.387 28.876 39278 6.2414
2 30.531 47866 9.4098 24742

3 49.476 76.723 25.286 28.386

4 73.893 83.714 25931 49.360

5 80.869 109.50 41.331 71.340

45 135° 2414 1 36.384 37.254 4.5051 6.2066
2 37.961 63.242 11.247 25735

3 61.671 92.993 26.967 34.303

4 86.685 11223 31.508 55637

5 102.16 139.05 50.710 82.870

60° 150° 3732 1 56.857 57.225 5.2427 6.2912
2 57.460 102.94 16.022 26.990

3 96.556 135.85 30.357 46.567

4 115.58 182.29 45290 63.765

5 145.13 196.25 59.035 107.17

75° 165° 7.596 1 135.95 137.54 6.0231 6.4933

2 138.85 230.00 24821 28.171

3 228.56 331.67 48.746 68.508

4 230.25 412.39 72.566 83815

5 319.04 508.69 95.380 126.46

Results in parentheses cf. Leissa"™®

(B > 15), however, the influence of the corner
stress singularities becomes more significant,
hence, the results of Liew et al” are, in
most instances, slightly higher upper bounds
on the exact wc™ o/D values compared to
those obtained by the present method, especially
for plates having large b. When the bending
stress singularities are considered, a first-order

(Mindlin) shear deformable analysis” should

wc™V p/D values
than the present classical thin-plate solutions.

in principle yield lower

Judging from the frequency comparison in
Table 4, one must conclude that one must
consider Williams-type corner stress singularities
not only for classically thin-plates but for
shear deformable ones also.

16 ZI=RXIZFTHY =RE
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Table 3 Number of polynomial and corner function
terms required of the five significant figure
frequency convergence of Table 2

B Polynomial Corner
Eages (degrees) terms functions
?(;JO 14X14 2
15, 45 14X14 8
CFCF 60 14X 14 12
75 14X14 20
0 14X 14 0
15, 30 14Xx14 4
CFCC 45 14X 14 6
60 14X14 8
75 14x14 10
0 18x18 0
15, 45 14X 14 4
CFRF 1 30, 60 14%14 6
75 14X 14 8
0 14X14 2
15, 30 14x14 4
CFFC 45 14X14 8
60 14X 14 12
75 14X 14 16

Table 4 Comparison of

4. Vibratory displacement contours

Depicted in Figs. 3 and 4 are the vibratory
transverse displacement contours corresponding
to the least upper bound frequency data for
the first six modes. The displacement contours
in Figs. 3 and 4 are normalized with respect
to the maximum displacement component
(ie, —1 < W Wy <1). Nondimensional fre-

quencies wa® p/D shown in Figs. 3 and 4
correspond to the converged values for the
thombic plates having bs=3 (or @ =143").
For clarity in Figs. 3 and 4, the nodal
patterns (lines of zero displacement during
the vibratory motion) are described by the

slightly darker contour lines.

frequency parameters wc™V o/ D for thombic plates with CFCF and CFFF edge conditions

Skew CFCF CFFE
Angle (8) a B/a | Mode No.| Present Work | Liew et al. [7) | Present Work | Liew et al. [7]
00 900 1.000 1 22.168 22.169 3.4711 34711
2 26.408 26.410 8.5073 85076
3 43.596 4359 21.286 21.287
4 61.177 61.181 27.199 27.199
5 67.181 67.189 30.959 30.959
150 1050 1.303 1 23.342 23.348 35831 35837
2 27.324 27.331 8.6968 87918
3 44.825 44.827 22229 22237
4 64.483 64.500 26.333 27.605
5 70.349 70.366 33.861 34.182
300 1200 1732 1 27.387 27.401 3.9278 3.9311
2 30.351 30.548 9.4098 9.4126
3 49.476 49,500 25.286 25.297
4 73.893 73.921 25.931 25934
5 80.869 80934 41.331 41.341
450 1350 2414 1 36.384 36.451 45051 45114
2 37.961 38.073 11.247 11.255
3 61.671 61.785 26.967 27.000
4 86.685 86.799 31.503 31.565
5 102.16 102.71 50.710 50.715
600 1500 3732 1 56.857 57820 5.2427 52763
2 57.460 58235 16.022 16.097
3 96.556 9.860 30.357 30.658
4 115.58 116.62 45290 45603
5 14513 147.15 59.035 59.324
750 1650 7.596 1 135.95 - 6.0231 -—
2 138.85 -— 24.821 -
3 22856 — 48746 -—
4 230.25 — 72.566 -
5 319.04 — 95.380 -—

M3 M1s (S M) 1999.3
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CFCF
F
XU
14.695
CFCC

®

4.5624 7.9942 10.990 14.352 16.219 19.699

g©
g}s//@

Fig. 3 Normalized transverse displacement contours(W/Wine) for the first six modes of CFCF and CFCC rhombic
plates(t/a=3)

Mode Number
Case I -2 3 4 5 6
CFFF
F F F F F
F F F F F F F F F F
0.4893 1.3267 2.8352 3.7390
CFFC
F@r F@F r%}' F@F F F
0.6239 2.6422 3.9686 6.0323 9.3188 9.8298

Fig. 4 Normalized transverse displacement contours(W/Wma for the first six modes of CFFF and CFFC rhombic
plates(ty/a=3)
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When one considers the normal symmetry
with respect to the y-axes of the CFFC
rhombic plate (see Fig. 4), modes 3 and 6
are also the first known nodal patterns of a
CFS isosceles triangular plates (b/4#=3) having
stress singularities at the vertex of their
apex angle. This is because the significant
straight node line lying along the y-symmetry
axis duplicate a simply supported edge
(with vanishing vibratory moments). No such
stress singularities are present at the FS and
SC acute base angles.

5. Concluding remarks

The primary contribution here is an alterna-
tive for obtaining accurate upper bound
solutions for free vibrations of classically
thin, skew rhombic plates with clamped and
free edges, while explicitly include stress
singularities at the two obtuse clamped-free
corners. The dynamical energies of the plate
have been extremized via the Ritz method
with the transverse displacement field approxi-
mated by mathematically complete polynomials
and admissible corner functions that account
for the unbounded stresses at the obtuse
clamped-free corners. The accuracy of the
assumed displacement field has been validated
by means of a convergence table. Here, it
has been shown that the convergence of
solution is enhanced when the hybrid trial
sets of polynomials and corner functions are
simultaneously utilized.

The accurate frequencies and mode shapes
for highly skewed (8 > 45° rhombic plates
presented herein may serve as benchmarks
for comparison with future solutions offered
by other investigators. A point of methodological
procedure is that investigators using continuum-

based and discrete element-based formulations
will have difficulty in calculating accurate
solutions to the title problem unless they
explicitly consider in the assumed displacement
or stress fields the moment singularities at

the obtuse clamped-free corners.
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