• Title/Summary/Keyword: 유연한 조인트

Search Result 31, Processing Time 0.024 seconds

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

Dynamic Analysis of A High Mobility Tracked Vehicle Using Compliant Track Link Model (유연성 궤도 모델을 사용한 고기동성 궤도차량의 동역학 해석)

  • 백운경;최진환;배대성
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1259-1266
    • /
    • 1999
  • The objective of this investigation is to develop a compliant track link model and apply this model to the multi-body dynamic analysis of high mobility tracked vehicles. Two major difficulties encountered in developing the compliant track models. The first one is that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution deals with high oscillatory signals resulting from the impulsive contact forces and stiff compliant elements to represent the joints between the track links. The second difficulty is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. This problem was sloved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios were tested for the high mobility tracked vehicle including accelaeration, high speed cruising, braking, and turning motion in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.

  • PDF

Manipulator Joint Friction Identification using Genetic Algorithm and its Experimental Verification (유전 알고리듬을 이용한 매니퓰레이터 조인트의 마찰력 규명 및 실험적 검증)

  • Kim, Gyeong-Ho;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1633-1642
    • /
    • 2000
  • Like many other mechanical dynamic systems, flexible manipulator systems experience stiction or sticking friction, which may cause input-dependent instabilities. Manipulator performance can be enha nced by identifying friction but it is hard and expensive to measure friction by direct and precise sensing of contact displacements and forces. This study addresses the problem of identifying flexible manipulator joint friction. A dynamic model of a two-link flexible manipulator based upon finite element and Lagrange's method is constructed. The dynamic model includes the effects of joint compliances and actuator dynamics. Friction is also incorporated in the dynamic model to account for stick-slip at the joints. Next, the friction parameters are to be determined. The identification problem is posed as an optimization problem to be solved using nonlinear programming methods. A genetic algorithm is used to increase the convergence rate and the chances of finding the global optimum. The identified friction parameters are experimentally verified and it is expected that the identification technique is applicable to a system parameter identification problem associated with a wide class of nonlinear systems.

Development of a Dynamic Simulation Program Including a Wheel-Rail Contact Module (휠-레일 접촉모듈을 포함한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Various programs for dynamic simulation of the railway vehicle have advantages and disadvantages. These programs have limitation that cannot express a large deformable body for an wire of the railway vehicle. In this study, a program for dynamic simulation of the railway vehicle is developed. And the rigid, flexible and large deformable body can be simulated using this program. Its reliability is verified by comparison with a commercial program. Also, a wire is considered as the large deformable body and a sliding joint which connects the rigid body to the large deformable body is included. Moreover, as the wheel-rail contact module is added, the dynamic simulation of the railway vehicle can be analyzed using the developed program.

Evaluation of mechanically fastened composite joint with the clamping force (클램핑 포스가 존재하는 복합재료 조인트의 특성 평가)

  • Ryu, Coong-O;Yu, Yeun-Ho;Lee, Young-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.84-89
    • /
    • 2005
  • The design of composite joint is a very important research area because they are often the weakest areas in composite structures. In this paper, the failure load of the mechanically fastened composite joint with the clamping force was predicted by the failure area index method. By the suggested failure area index method, the strength of the mechanically fastened composite joint could be predicted within 22.5% when clamping force was applied to the composite joint.

  • PDF

Nonlinear robust control design with quadratic Lyapunov function for robots with joint elasticity (2차의 리아프노프 함수에 의한 유연 조인트 로봇의 비선형 견실제어기 설계)

  • 김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.573-576
    • /
    • 1996
  • We propose robust control scheme for flexible joint manipulator in the presence of nonlinearity and mismatched uncertainty. The control is designed based on Lyapunov approach. The robust control which is based on the computed torque scheme and state transformation via implanted control is introduced. The design procedure starts with the construction of linearized subsystems via the computed torque method and then uses state transformation. With this approach we do not impose an upper-bound constraint on the inertia matrix in case it is known. Thus, this control can be applied to arbitrary manipulators. The resulting robust control guarantees practical stability for both the transformed system and the original system. The transformation is only based on the possible bound of uncertainty.

  • PDF

A Study on the Effects of Dynamic Vibration Absorber for Driveline with Propeller Shaft Supported by Center Bearing (센터 베어링으로 지지된 추진축을 갖는 구동계에서의 진동흡진기의 영향에 대한 연구)

  • 강영춘;임재환;정호일;이규령;이창노;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.925-930
    • /
    • 2004
  • This paper is to study vibration effects of the dynamic vibration absorber. Multi-body dynamic analysis is carried out for the vehicle driveline model using ADAMS with flexible propeller shaft attached with the vibration damper. Primary bending mode frequency of the propeller shaft is obtained from the simulation and coincides with the experimental result. Various design parameters are studied in dynamic simulation operated by the engine torque input. This paper identifies the responses of dynamic vibration absorbers in the driveline with propeller shaft, which will be used to find out optimal design parameters.

  • PDF

Thermo-mechanical Behavior of WB-PBGA Packages with Pb-Sn Solder and Lead-free Solder Using Moire Interferometry (무아레 간섭계를 이용한 유연 솔더와 무연 솔더 실장 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Lee, Bong-Hee;Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Pb-Sn solder is rapidly being replaced by lead-free solder for board-level interconnection in microelectronic package assemblies due to the environmental protection requirement. There is a general lack of mechanical reliability information available on the lead-free solder. In this study, thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Experiments are conducted for two types of WB-PBGA packages that have Pb-Sn solder and lead-free solder as joint interconnections. Using real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Bending deformations of the assemblies and average strains of the solder balls are investigated and compared for the two type of WB-PBGA package assemblies. Results show that shear strain in #3 solder ball located near the chip shadow boundary is dominant for the failure of the package with Pb-Sn solder, while normal strain in #7 most outer solder ball is dominant for that with lead-free solder. It is also shown that the package with lead-free solder has much larger bending deformation and 10% larger maximum effective strain than the package with Pb-Sn solder at same temperature level.

Experimental and Numerical Study on Board Level Impact Test of SnPb and SnAgCu BGA Assembly Packaging (BGA Type 유.무연 솔더의 기계적 충격에 대한 보드레벨 신뢰성 평가)

  • Lim, Ji-Yeon;Jang, Dong-Young;Ahn, Hyo-Sok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.77-86
    • /
    • 2008
  • The reliability of leaded and lead-free solders of BGA type packages on a printed circuit board was investigated by employing the standard drop test and 4-point bending test. Tested solder joints were examined by optical microscopy to identify associated failure mode. Three-dimensional finite element analysis(FEM) with ANSYS Workbench v.11 was carried out to understand the mechanical behavior of solder joints under the influence of bending or drop impact. The results of numerical analysis are in good agreement with those obtained by experiments. Packages in the center of the PCB experienced higher stress than those in the perimeter of the PCB. The solder joints located in the outermost comer of the package suffered from higher stress than those located in center region. In both drop and bending impact tests, the lead-free solder showed better performances than the leaded solders. The numerical analysis results indicated that stress and strain behavior of solder joint were dependent on various effective parameters.

  • PDF