DOI QR코드

DOI QR Code

탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발

The Development of a Sliding Joint for Very Flexible Multibody Dynamics

  • 발행 : 2005.08.01

초록

In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

키워드

참고문헌

  1. Wang, Y. M., 2000, 'The Transient Dynamics of a Cable-Mass System Due to the Motion of an Attached Accelerating Mass,' Journal of Solids and Structures, Vol. 37, pp. 1361-1383 https://doi.org/10.1016/S0020-7683(98)00293-5
  2. Al-Qassab, M., Nair, S., 2003, 'Dynamics of an Elastic Cable Carrying a Moving Mass Particle,' Journal of Nonlinear Dynamics, Vol. 33, pp. 11-32 https://doi.org/10.1023/A:1025558825934
  3. Siddiqui, S. A., Golnaraghi, M. F., 1998, 'Dynamics of a Flexible Cantilever Beam Carrying a Moving Mass,' Journal of Nonlinear Dynamics, Vol. 15, pp. 137-154 https://doi.org/10.1023/A:1008205904691
  4. Hwang, R. S., Haug, E. J., 1990, 'Translational Joints in Flexible Multibody Dynamics,' Journal of Mechanical Structures and Machines, Vol. 18, No. 4, pp. 543-564 https://doi.org/10.1080/08905459008915684
  5. Sugiyama, H., Escalona, J., Shabana, A. A., 2003, 'Formulation of Three-Dimensional Joint Constraints Using Absolute Nodal Coordinates,' Journal of Nonlinear Dynamics, Vol. 31, pp. 167-195 https://doi.org/10.1023/A:1022082826627
  6. Seo, J. H., Jung, I. H., Han, H. S., Park, T. W., 2004, 'Dynamic Analysis of A Very Flexible Cable Carrying A Moving Munltibody System,' Transactions of the Korean Society for Noise and Vibration Engeering, Vol. 14, No. 2, pp.150-156 https://doi.org/10.5050/KSNVN.2004.14.2.150
  7. Huston, R. L., Passerello, C. E., 1982, 'Validation of Finite Segment Cable Models,' Journal of Computers and Structures, Vol. 15, No. 6, pp. 653-660 https://doi.org/10.1016/S0045-7949(82)80006-0
  8. Winget, J. M., Huston, R. L., 1976, 'Cable Dynamics-A Finite Segment Approach,' Journal of Computers and Structures, Vol. 6, pp. 475-480 https://doi.org/10.1016/0045-7949(76)90042-0
  9. Kamman, J. W., Huston, R. L., 2001, 'Multibody Dynamics Modeling of Variable Length Cable Systems,' Journal of Multibody System Dynamics, Vol. 5, pp. 211-221 https://doi.org/10.1023/A:1011489801339
  10. Shabana, A. A., 'Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics,' J. of Nonlinear Dynamics, Vol. 16, pp. 293-306, 1988 https://doi.org/10.1023/A:1008072517368
  11. Escalona, J. L., Hussien, H. A., Shabana, A. A., 1998, 'Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics,' Journal of Nonlinear Dynamics, Vol. 16, pp. 293-306 https://doi.org/10.1023/A:1008072517368
  12. Yoo, W. S., Lee, S. J., Sohn, J. H., 2003, 'Large Oscillations of a Thin Cantilever Beam: Physical Experiments and Simulation Using Absolute Nodal Coordinate Formulation,' Journal of Nonlinear Dynamics, Vol. 34, pp. 3-29 https://doi.org/10.1023/B:NODY.0000014550.30874.cc
  13. Mikkola, A. M., Shabana, A. A., 2003, 'A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications,' Journal of Multibody System Dynamics, Vol. 9, pp. 283-309 https://doi.org/10.1023/A:1022950912782
  14. Shabana. A. A., Yakoub, R. Y., 2001, 'Three Dimensional Absolute Nodal Coordinate Nodal Coordinate Formulation for Beam Elements: Theory,' Transaction of the ASME, Vol. 123, pp. 606-613 https://doi.org/10.1115/1.1410100
  15. Shabana. A. A., Yakoub, R. Y., 2001, 'Three Dimensional Absolute Nodal Coordinate Nodal Coordinate Formulation for Beam Elements: Implementation and Applications,' Transaction of the ASME, Vol. 123, pp. 614-621 https://doi.org/10.1115/1.1410099
  16. Bonet, J., Wood, R. D., 1997, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press
  17. Kenneth, H. H., Thornton, E. A., 1995, The Finite EIement Method for Engineers, John Willey & Sons.
  18. Shabana, A. A., 1997, 'A QR Decomposition Method for Flexible Multibody Dynamics,' Technical Report No. MBS97-2-UIC, Department of Mechanical Engineering, University of Illinois at Chicago
  19. Haug, E. J., 1989, Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon

피인용 문헌

  1. Dynamic-Elastic Deformation Analysis for Precise Design of High Speed Press Machine vol.38, pp.1, 2014, https://doi.org/10.3795/KSME-A.2014.38.1.079