• Title/Summary/Keyword: 오티피

Search Result 5, Processing Time 0.015 seconds

Design of low-power OTP memory IP and its measurement (저전력 OTP Memory IP 설계 및 측정)

  • Kim, Jung-Ho;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2541-2547
    • /
    • 2010
  • In this paper, we propose a design technique which replaces logic transistors of 1.2V with medium-voltage transistors of 3.3V having small off-leakage current in repetitive block circuits where speed is not an issue, to implement a low-power eFuse OTP memory IP in the stand-by state. In addition, we use dual-port eFuse cells reducing operational current dissipation by reducing capacitances parasitic to RWL (Read word-line) and BL (Bit-line) in the read mode. Furthermore, we propose an equivalent circuit for simulating program power injected to an eFuse from a program voltage. The layout size of the designed 512-bit eFuse OTP memory IP with a 90nm CMOS image sensor process is $342{\mu}m{\times}236{\mu}m$. It is confirmed by measurement experiments on 42 samples with a program voltage of 5V that we get a good result having 97.6 percent of program yield. Also, the minimal operational supply voltage is measured well to be 0.9V.

Design of eFuse OTP Memory Programmable in the Post-Package State for PMICs (Post-Package 프로그램이 가능한 eFuse OTP 메모리 설계)

  • Jin, Liyan;Jang, Ji-Hye;Kim, Jae-Chul;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1734-1740
    • /
    • 2012
  • In this paper, we propose a FSOURCE circuit which requires such a small switching current that an eFuse OTP memory can be programmed in the post-package state of the PMIC chips using a single power supply. The proposed FSOURCE circuit removes its short-circuit current by using a non-overlapped clock and reduces its maximum current by reducing the turned-on slope of its driving transistor. Also, we propose a DOUT buffer circuit initializing the output data of the eFuse OTP memory with arbitrary data during the power-on reset mode. We design a 24-bit differential paired eFuse OTP memory which uses Magnachip's $0.35{\mu}m$ BCD process, and the layout size is $381.575{\mu}m{\times}354.375{\mu}m$($=0.135mm^2$).

Design of a 32-Bit eFuse OTP Memory for PMICs (PMIC용 32bit eFuse OTP 설계)

  • Kim, Min-Sung;Yoon, Keon-Soo;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2209-2216
    • /
    • 2011
  • In this paper, we design a 32-bit eFuse OTP memory for PMICs using MagnaChip's $0.18{\mu}m$ process. We solve a problem of an electrical shortage between an eFuse link and the VSS of a p-substrate in programming by placing an n-well under the eFuse link. Also, we propose a WL driver circuit which activates the RWL (read word-line) or WWL (write word-line) of a dual-port eFuse OTP memory cell selectively when a decoded WERP (WL enable for read or program) signal is inputted to the eFuse OTP memory directly. Furthermore, we reduce the layout area of the control circuit by removing a delay chain in the BL precharging circuit. We'can obtain an yield of 100% at a program voltage of 5.5V on 94 manufactured sample dies when measured with memory tester equipment.

Design of a redundancy control circuit for 1T-SRAM repair using electrical fuse programming (전기적 퓨즈 프로그래밍을 이용한 1T-SRAM 리페어용 리던던시 제어 회로 설계)

  • Lee, Jae-Hyung;Jeon, Hwang-Gon;Kim, Kwang-Il;Kim, Ki-Jong;Yu, Yi-Ning;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1877-1886
    • /
    • 2010
  • In this paper, we design a redundancy control circuit for 1T-SRAM repair using electrical fuse programming. We propose a dual port eFuse cell to provide high program power to the eFuse and to reduce the read current of the cell by using an external program supply voltage when the supply power is low. The proposed dual port eFuse cell is designed to store its programmed datum into a D-latch automatically in the power-on read mode. The layout area of an address comparison circuit which compares a memory repair address with a memory access address is reduced approximately 19% by using dynamic pseudo NMOS logic instead of CMOS logic. Also, the layout size of the designed redundancy control circuit for 1T-SRAM repair using electrical fuse programming with Dongbu HiTek's $0.11{\mu}m$ mixed signal process is $249.02 {\times}225.04{\mu}m^{2}$.

Design of an 8-Bit eFuse One-Time Programmable Memory IP Using an External Voltage (외부프로그램 전압을 이용한 8비트 eFuse OTP IP 설계)

  • Cho, Gyu-Sam;Jin, Mei-Ying;Kang, Min-Cheol;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.183-190
    • /
    • 2010
  • We propose an eFuse one-time programmable (OTP) memory cell based on a logic process, which is programmable by an external program voltage. For the conventional eFuse OTP memory cell, a program datum is provided with the SL (Source Line) connected to the anode of the eFuse going through a voltage drop of the SL driving circuit. In contrast, the gate of the NMOS program transistor is provided with a program datum and the anode of the eFuse with an external program voltage (FSOURCE) of 3.8V without any voltage drop for the newly proposed eFuse cell. The FSOURCE voltage of the proposed cell keeps either 0V or the floating state at read mode. We propose a clamp circuit for being biased to 0V when the voltage of FSOURCE is in the floating state. In addition, we propose a VPP switching circuit switching between the logic VDD (=1.8V) and the FSOURCE voltage. The layout size of the designed eFuse OTP memory IP with Dongbu HiTek's $0.15{\mu}m$ generic process is $359.92{\times}90.98{\mu}m^2$.