• Title/Summary/Keyword: 시스템-온-칩

Search Result 136, Processing Time 0.024 seconds

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

A Benchmark of Hardware Acceleration Technology for Real-time Simulation in Smart Farm (CUDA vs OpenCL) (스마트 시설환경 실시간 시뮬레이션을 위한 하드웨어 가속 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.160-160
    • /
    • 2017
  • 자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. $50m{\times}100m$의 단면적인 연동 딸기 온실을 대상으로 $3{\times}3{\times}3$의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of $O=O^3$)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교 분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 Pascal Titan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬($100{\times}200{\times}5{\times}4$)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.

  • PDF

Development of Hardware for the Architecture of A Remote Vital Sign Monitor (무선 체온 모니터기 아키텍처 하드웨어 개발)

  • Jang, Dong-Wook;Jang, Sung-Whan;Jeong, Byoung-Jo;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2549-2558
    • /
    • 2010
  • A Remote Vital Sign Monitor is an in-home healthcare system designed to wirelessly monitor core-body temperature. The Remote Vital Sign Monitor provides accuracy and features which are comparable to hospital equipment while minimizing cost with ease-of-use. It has two parts, a bandage and a monitor. The bandage and the monitor both use the Chipcon2430(CC2430) which contains an integrated 2.4GHz Direct Sequence Spread Spectrum radio. The CC2430 allows Remote Vital Sign Monitor to operate at over a 100-foot indoor radius. A simple user interface allows the user to set an upper temperature and a lower temperature that is monitored with respect to the core-body temperature. If the core-body temperature exceeds the one of two defined temperatures, the alarm will sound. The alarm is powered by a low-voltage audio amplifier circuit which is connected to a speaker. In order to accurately calculate the core-body temperature, the Remote Vital Sign Monitor must utilize an accurate temperature sensing device. The thermistor selected from GE Sensing satisfies the need for a sensitive and accurate temperature reading. The LCD monitor has a screen size that measures 64.5mm long by 16.4mm wide and also contains back light, and this should allow the user to clearly view the monitor from at least 3 feet away in both light and dark situations.

A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems (3G 통신 시스템 응용을 위한 0.31pJ/conv-step의 13비트 100MS/s 0.13um CMOS A/D 변환기)

  • Lee, Dong-Suk;Lee, Myung-Hwan;Kwon, Yi-Gi;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.75-85
    • /
    • 2009
  • This work proposes a 13b 100MS/s 0.13um CMOS ADC for 3G communication systems such as two-carrier W-CDMA applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs a four-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. Area-efficient high-speed high-resolution gate-bootstrapping circuits are implemented at the sampling switches of the input SHA to maintain signal linearity over the Nyquist rate even at a 1.0V supply operation. The cascode compensation technique on a low-impedance path implemented in the two-stage amplifiers of the SHA and MDAC simultaneously achieves the required operation speed and phase margin with more reduced power consumption than the Miller compensation technique. Low-glitch dynamic latches in sub-ranging flash ADCs reduce kickback-noise referred to the differential input stage of the comparator by isolating the input stage from output nodes to improve system accuracy. The proposed low-noise current and voltage references based on triple negative T.C. circuits are employed on chip with optional off-chip reference voltages. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.70LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 64.5dB and a maximum SFDR of 78.0dB at 100MS/s, respectively. The ABC with an active die area of $1.22mm^2$ consumes 42.0mW at 100MS/s and a 1.2V supply, corresponding to a FOM of 0.31pJ/conv-step.

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

A Study of Fabrication of RF Control System for Building Sunshade (건물 차양을 위한 RF제어 시스템 제작에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.149-157
    • /
    • 2014
  • This paper is based on the fabrication of wireless control system for the building shading device. RF Module was controlled by UHF wireless CC1020 chip which has low electrical power and low electrical voltage. Also 447.8625~447.9875 frequency, 4800Baud data rate and 12.5 kHz channel spacing was controlled by the use of SPDT switch and with Microcontroller program. Furthermore, the helical antenna was used. The starting production of 447.8625~447.9875 kHz wireless electrical power was used. As the result, it did not exceed 10dBm which is the standard of low power wireless system. Shading efficiency was measured at 25%, 50%, 75% direction with controlling the interior temperature and the intensity of illumination at the rate of 1 hour. As the result, the intensity of illumination was lowered to 82~87% at 25% direction with $0.6{\sim}1.4^{\circ}C$ lowered temperature. At 50% direction, the intensity of illumination was lowered to 60~68% with $2.3{\sim}4.1^{\circ}C$ lowered temperature. And at 75% direction, the intensity of illumination was lowered to 41~47% with $3.4{\sim}5.1^{\circ}C$ lowered temperature.

A 10b 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS Pipeline ADC for HDTV Applications (HDTV 응용을 위한 10비트 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS 파이프라인 A/D 변환기)

  • Park, Beom-Soo;Kim, Young-Ju;Park, Seung-Jae;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.60-68
    • /
    • 2009
  • This work proposes a 10b 200MS/s 65nm CMOS ADC for high-definition video systems such as HDTV requiring high resolution and fast operating speed simultaneously. The proposed ADC employs a four-step pipeline architecture to minimize power consumption and chip area. The input SHA based on four capacitors reduces the output signal range from $1.4V_{p-p}$ to $1.0V_{p-p}$ considering high input signal levels at a low supply voltage of 1.2V. The proposed three-stage amplifiers in the input SHA and MDAC1 overcome the low output resistance problem as commonly observed in a 65nm CMOS process. The proposed multipath frequency-compensation technique enables the conventional RNMC based three-stage amplifiers to achieve a stable operation at a high sampling rate of 200MS/s. The conventional switched-bias power-reduction technique in the sub-ranging flash ADCs further reduces power consumption while the reference generator integrated on chip with optional off-chip reference voltages allows versatile system a locations. The prototype ADC in a 65nm CMOS technology demonstrates a measured DNL and INL within 0.19LSB and 0.61LSB, respectively. The ADC shows a maximum SNDR of 54.BdB and 52.4dB and a maximum SFDR of 72.9dB and 64.8dB at 150MS/S and 200MS/s, respectively. The proposed ADC occupies an active die area of $0.76mm^2$ and consumes 75.6mW at a 1.2V supply voltage.

Analysis on the Cooling Efficiency of High-Performance Multicore Processors according to Cooling Methods (기계식 쿨링 기법에 따른 고성능 멀티코어 프로세서의 냉각 효율성 분석)

  • Kang, Seung-Gu;Choi, Hong-Jun;Ahn, Jin-Woo;Park, Jae-Hyung;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.1-11
    • /
    • 2011
  • Many researchers have studied on the methods to improve the processor performance. However, high integrated semiconductor technology for improving the processor performance causes many problems such as battery life, high power density, hotspot, etc. Especially, as hotspot has critical impact on the reliability of chip, thermal problems should be considered together with performance and power consumption when designing high-performance processors. To alleviate the thermal problems of processors, there have been various researches. In the past, mechanical cooling methods have been used to control the temperature of processors. However, up-to-date microprocessors causes severe thermal problems, resulting in increased cooling cost. Therefore, recent studies have focused on architecture-level thermal-aware design techniques than mechanical cooling methods. Even though architecture-level thermal-aware design techniques are efficient for reducing the temperature of processors, they cause performance degradation inevitably. Therefore, if the mechanical cooling methods can manage the thermal problems of processors efficiently, the performance can be improved by reducing the performance degradation due to architecture-level thermal-aware design techniques such as dynamic thermal management. In this paper, we analyze the cooling efficiency of high-performance multicore processors according to mechanical cooling methods. According to our experiments using air cooler and liquid cooler, the liquid cooler consumes more power than the air cooler whereas it reduces the temperature more efficiently. Especially, the cost for reducing $1^{\circ}C$ is varied by the environments. Therefore, if the mechanical cooling methods can be used appropriately, the temperature of high-performance processors can be managed more efficiently.

Automatic Interface Synthesis based on IP Categorization and Characteristics Matching (IP 범주화와 특성 대응을 통한 인터페이스 회로 자동 합성)

  • Yun, Chang-Ryul;Jhang, Kyoung-Son
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.34-44
    • /
    • 2006
  • A system-on-a-chip (SoC) design uses pre-verified IP hardware blocks in order to reduce design time. We need interface circuits to connect IPs with different protocols. In SoC design we should design interface circuits frequently and these tasks are somewhat time-consuming and error-prone. So it is necessary to generate the interface circuits automatically. Several studies have been made on generating interface circuits only from the communication protocols of IPs. With existing approaches, it is not easy to generate interface circuits connecting two IPs only from communication protocols: connection between IP with address and W without address, connection between IP with only one port to transfer address/data and IP with different ports for address and data connection between IP that transfer address and data together and IP that transfer only one address with a number of data in a burst. No consideration of various characteristics of IPs and no changed algorithm are responsible for it. In order to solve this problem, the proposed approach categorizes communication protocols of IPs, and takes characteristics matching of IPs into account during the interface synthesis. In experiments, we show that we could correctly generate and verify interface circuits for IPs with different characteristics.

An Efficient Test Compression Scheme based on LFSR Reseeding (효율적인 LFSR 리시딩 기반의 테스트 압축 기법)

  • Kim, Hong-Sik;Kim, Hyun-Jin;Ahn, Jin-Ho;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.26-31
    • /
    • 2009
  • A new LFSR based test compression scheme is proposed by reducing the maximum number of specified bits in the test cube set, smax, virtually. The performance of a conventional LFSR reseeding scheme highly depends on smax. In this paper, by using different clock frequencies between an LFSR and scan chains, and grouping the scan cells, we could reduce smax virtually. H the clock frequency which is slower than the clock frequency for the scan chain by n times is used for LFSR, successive n scan cells are filled with the same data; such that the number of specified bits can be reduced with an efficient grouping of scan cells. Since the efficiency of the proposed scheme depends on the grouping mechanism, a new graph-based scan cell grouping heuristic has been proposed. The simulation results on the largest ISCAS 89 benchmark circuit show that the proposed scheme requires less memory storage with significantly smaller area overhead compared to the previous test compression schemes.