• Title/Summary/Keyword: 수학 학습지도

Search Result 638, Processing Time 0.021 seconds

A Case Study on the classroom life and the identity of the Elementary Mathematics Gifted Education (초등수학 영재교육원의 교실 생활과 정체성에 대한 사례연구)

  • Lee, Hak-Ro;Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.25 no.1
    • /
    • pp.99-118
    • /
    • 2011
  • For this case study of gifted education, two classrooms in two locations, show life in general of the gifted educational system. And for this case study the identity of teachers and the gifted, help to activate the mathematically gifted education for these research questions, which are as followed: Firstly, how is the gifted education classroom life? Secondly, what kind of identity do the teachers and gifted students bring to mathematics, mathematics teaching and mathematics learning? Being selected in the gifted children's education center solves the research problem of characteristic and approach. Backed by the condition and the permission possibility, 2 selected classes and 2 people, which are coming and going. Gifted education classroom life, the identity of teachers and gifted students in mathematics and mathematics teaching and mathematic learning. It will be for 3 months, with various recordings and vocal instruction between teacher and students. Collected observations and interviews will be analyzed over the course of instruction. The results analyzed include, social participation, structure, and the formation of the gifted education classroom life. The organization of classes were analyzed by the classes conscious levels to collect and retain data. The classes verification levels depended on the program's first class incentive, teaching and learning levels and understanding of gifted math. A performance assessment will be applied after the final lesson and a consultation with parents and students after the final class. The six kinds of social participation structure come out of the type of the most important roles in gifted education accounts, for these types of group discussions and interactions, students must have an interaction or individual activity that students can use, such as a work product through the real materials, which release teachers and other students for that type of questions to evaluate. In order for the development of meaningful mathematical concepts to formulate, mathematical principles require problem solving among all students, which will appear in the resolution or it will be impossible to map the meaning of the instruction from which it was formed. These results show the analysis of the mathematics, mathematics teaching, mathematics learning and about the identity of the teachers and gifted. Gifted education teachers are defined by gifted math, which is more difficult and requires more differentiated learning, suitable for gifted students. Gifted was defined when higher level math was created and challenged students to deeper thinking. Gifted students think that gifted math is creative learning and they are forward or passive to one-way according to the education atmosphere.

The Translation Ability of Functional Expressions of High School Students according to the level of Mathematics (수학 성취 수준에 따른 고등학생들의 함수적 표현의 번역 능력)

  • Chun, You Young;Lim, Daekeun;Ryu, Hyunah
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.1
    • /
    • pp.141-155
    • /
    • 2013
  • Process to translate into other forms in the form of expression for function is important in the development of functional thinking. Also it should be emphasized on the teaching of the function. This study will identify the translation ability of functional expressions and errors in the process to translate. The purpose of this study is to suggest important implications for the teaching and learning of function. To do this, we lead high school students perform the task to examine the translation ability. Then we compute a percentage of correct answers for each question and analyze the types of errors and their causes.

  • PDF

Sixth Grade Students' Understanding on Unit as a Foundation of Multiple Interpretations of Fractions (분수의 다양한 의미에서 단위에 대한 초등학교 6학년 학생들의 이해 실태 조사)

  • Lee, Ji-Young;Pang, JeongSuk
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.1
    • /
    • pp.83-102
    • /
    • 2014
  • The purpose of this study was to explore students' understanding on units embedded in multiple interpretations of fractions: (a) part-whole relationships, (b) measures, (c) quotients, (d) ratios, and (e) operators. A total of 150 sixth graders in elementary schools were surveyed by a questionnaire comprised of 20 tasks in relation to multiple interpretations of fractions. As results, students' performance on units varied depending on the interpretations of fractions. Students had a tendency to regard the given whole as the unit, which led to incorrect answers. This study suggests that students should have rich experience to identify and operate various units in the context of multiple fractions.

  • PDF

An Analysis on the Proportional Reasoning Understanding of 6th Graders of Elementary School -focusing to 'comparison' situations- (초등학교 6학년 학생들의 비례 추론 능력 분석 -'비교' 상황을 중심으로-)

  • Park, Ji Yeon;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.105-129
    • /
    • 2016
  • The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.

A Design of Multiplication Unit of Elementary Mathematics Textbook by Making the Best Use of Diversity of Algorithm (알고리즘의 다양성을 활용한 두 자리 수 곱셈의 지도 방안과 그에 따른 초등학교 3학년 학생의 곱셈 알고리즘 이해 과정 분석)

  • Kang, Heung-Kyu;Sim, Sun-Young
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.287-314
    • /
    • 2010
  • The algorithm is a chain of mechanical procedures, capable of solving a problem. In modern mathematics educations, the teaching algorithm is performing an important role, even though contracted than in the past. The conspicuous characteristic of current elementary mathematics textbook's manner of manipulating multiplication algorithm is exceeding converge to 'standard algorithm.' But there are many algorithm other than standard algorithm in calculating multiplication, and this diversity is important with respect to didactical dimension. In this thesis, we have reconstructed the experimental learning and teaching plan of multiplication algorithm unit by making the best use of diversity of multiplication algorithm. It's core contents are as follows. Firstly, It handled various modified algorithms in addition to standard algorithm. Secondly, It did not order children to use standard algorithm exclusively, but encouraged children to select algorithm according to his interest. As stated above, we have performed teaching experiment which is ruled by new lesson design and analysed the effects of teaching experiment. Through this study, we obtained the following results and suggestions. Firstly, the experimental learning and teaching plan was effective on understanding of the place-value principle and the distributive law. The experimental group which was learned through various modified algorithm in addition to standard algorithm displayed higher degree of understanding than the control group. Secondly, as for computational ability, the experimental group did not show better achievement than the control group. It's cause is, in my guess, that we taught the children the various modified algorithm and allowed the children to select a algorithm by preference. The experimental group was more interested in diversity of algorithm and it's application itself than correct computation. Thirdly, the lattice method was not adopted in the majority of present mathematics school textbooks, but ranked high in the children's preference. I suggest that the mathematics school textbooks which will be developed henceforth should accept the lattice method.

  • PDF

An Analysis of the Probability Unit in the Middle School Textbook 8-B in the Aspect of Information Analysis and Utilization (정보 분석 및 활용 측면에서의 중학교 2학년 확률 단원 분석)

  • Lee, Young-Ha;Kwon, Se-Lim
    • School Mathematics
    • /
    • v.11 no.3
    • /
    • pp.389-413
    • /
    • 2009
  • This thesis assumes that the teaching objective of the Probability unit of the 8th grade textbook under the 7th National Curriculum is to enhance the ability to analyze and utilize informations. And we examine them if this point of view is fully reflected. Based on the analysis of the textbook analysis, followings are found. 1) It is necessary to emphasize more enumerating all possible cases and to induce formulae counting the number of possible cases through organizing them 2) The probability is to be decribed more clearly as a likelihood of events and to be introduced and followed through various students' experiences and the relative frequencies. Less emphasis on probability computations, while more emphasis on probability comparisons of events are recommended. 3) The term "influential events"(a kind of stochastic correlation) is ambiguous. It is necessary to make clear what it means at tile level of the 8th grade or to discard it for it is to be learned at the 10th grade again. Especially, contingency table has been introduced at the 9th grade under the 7th National Curriculum. 4) Uses of the likelihood principle in making a decision and in learning the reliability of it should be encouraged. And students are to team the hazard of transitive inferences in probability comparisons. As a consequence of above, we feel that textbook authors and related stakeholder are to be more serious about the behavioral changes of students that may come along with the didactics of specific contents of school mathematics.

  • PDF

A Case Study on Teaching Solutions Exploration of Wythoff's Game through Using the Analogy for the Elementary Gifted Class (초등학교 영재학급에서 유추를 활용한 위도프 게임의 해법 탐구 지도 방법)

  • Bae, Sin Young;Song, Sang Hun
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.1
    • /
    • pp.95-111
    • /
    • 2015
  • The purpose of this study is to analyze cases on teaching solutions exploration of Wythoff's game through using the analogy for the gifted elementary students, to suggest useful teaching methods. Students recognized structural similarity among problems on the basis of relevance of conditions of problems. The discovery of structural similarity improves the ability to solve problems. Although 2 groups-NIM game with surface similarity is not helpful in solving Wythoff's game, Queen's move game with structural similarity makes it easier for students to solve Wythoff's game. Useful teaching methods to find solutions of Wythoff's game through using the analogy are as follow. Encoding process helps students make sense of the game. It is significant to help students realize how many stones are remained and how the location of Queen can be expressed by the ordered pair. Inferring process helps students find a solution of 2 groups-NIM game and Queen's move game. It is necessary to find a winning strategy through reversely solving method. Mapping process helps students discover surface similarity and structural similarity through identifying commonalities between the two games. It is crucial to recognize the relationship among the two games based on the teaching in the Encoding process. Application process encourages students to find a solution of Wythoff's game. It is more important to find a solution by using the structural similarity of the Queen's move game rather than reversely solving method.

The comparison on the learning effect of low-achievers in mathematics using Blended e-learning and Personalized system of instruction (수학 성취도가 낮은 학생의 보충 지도 과정에서 블렌디드 e-러닝과 개별화 교수체제의 효과 비교 분석)

  • Song, Dagyeom;Lee, Bongju
    • The Mathematical Education
    • /
    • v.56 no.2
    • /
    • pp.161-175
    • /
    • 2017
  • The purpose of this study is to compare and analyze the impact on low-achievers in mathematics who studied mathematics using Blended e-learning and Personalized system of instruction after school. Blended e-learning is defined as the management of e-learning using the e-study run by the education office in local. Personalized system of instruction was proceeded as follows; (1) all students are given a syllabicated learning task and a study guide, (2) students study the material autonomously according to their own pace for a certain period of time, (3) the teacher strengthens the students' motivation through grading and feedback after students study a subject and solve the evaluation problem. The learning materials for Personalized system of instruction are re-edited the offline education contents provided by the blended e-learning to the level of students. The 118 $7^{th}$ grade students from the D middle school participated in this study. The results were verified by achievement tests before and after the study, as well as survey regarding their attitude toward mathematics. The results are as follows. First, Blended e-learning has more positive impacts than Personalized system of instruction in mathematics achievement. Second, there was no difference in mathematics achievement according to their self-directed learning between Blended e-learning and Personalized system of instruction. Third, both types utilizing Blended e-learning and Personalized system of instruction have positive effect on attitude toward mathematics, and there is not their difference between two methods of teaching and learning mathematics.

Mathematical Cognition as the Construction of Concepts in Kant's Critique of Pure Reason ("순수이성비판"에 나타난 수학적 인식의 특성: 개념의 구성)

  • Yim, Jae-Hoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • Kant defines mathematical cognition as the cognition by reason from the construction of concepts. In this paper, I inquire the meaning and the characteristics of the construction of concepts based on Kant's theory on the sensibility and the understanding. To construct a concept is to exhibit or represent the object which corresponds to the concept in pure intuition apriori. The construction of a mathematical concept includes a dynamic synthesis of the pure imagination to produce a schema of a concept rather than its image. Kant's transcendental explanation on the sensibility and the understanding can be regarded as an epistemological theory that supports the necessity of arithmetic and geometry as common core in human education. And his views on mathematical cognition implies that we should pay more attention to how to have students get deeper understanding of a mathematical concept through the construction of it beyond mere abstraction from sensible experience and how to guide students to cultivate the habit of mind to refer to given figures or symbols as schemata of mathematical concepts rather than mere images of them.

  • PDF

A Study on Possibility of Introducing Descartes' Theorem to Mathematically Gifted Students through Analogical Reasoning (영재교육에서 유추를 통한 데카르트 정리의 도입가능성 고찰)

  • Choi, Nam-Kwang;Lew, Hee-Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.4
    • /
    • pp.479-491
    • /
    • 2009
  • This paper researches the possibility of introducing Descartes' theorem to mathematically gifted students. Not only is Descartes' theorem logically equivalent to Euler's theorem but is hierarchically connected with Gauss-Bonnet theorem which is the core concept on differential geometry. It is possible to teach mathematically gifted students Descartes' theorem by generalizing mathematical property in solid geometry through analogical reasoning, that is, so in a polyhedrons the sum of the deficient angles is $720^\circ$ as in an polygon the sum of the exterior angles is $360^\circ$. This study introduces an alternative method of instruction that we enable mathematically gifted students to reinvent Descartes' theorem through analogical reasoning instead of deductive reasoning.

  • PDF