• 제목/요약/키워드: 수학 문제해결

검색결과 1,333건 처리시간 0.02초

수학 문제 해결과정에서 초등학교 6학년 학생들의 시각적 표현에 관한 연구 (A Study on the 6th Graders' Use of Visual Representations in Mathematical Problem Solving)

  • 황현미;방정숙
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제12권2호
    • /
    • pp.81-97
    • /
    • 2009
  • 수학 문제를 해결하는 과정에서 시각적 표현을 적절히 활용하면 문제의 의미를 보다 확실히 이해할 수 있고 궁극적으로 문제를 해결할 가능성을 높인다. 본 연구는 6학년 학생들을 대상으로 수학 문제를 해결할 때 시각적 표현을 얼마나 사용하는지, 어떤 유형을 어떻게 활용하는지, 그리고 이런 시각적 표현의 사용 및 유형과 문제해결과의 관계는 어떠한지 분석하였다. 연구 결과, 많은 학생들이 시각적 표현보다는 수식을 사용하는 경우가 많았던 반면에, 시각적 표현을 사용한 경우가 그렇지 않은 경우보다 성공률이 높게 나타났다. 시각적 표현 중에서도 도식 표현을 사용한 학생들이 성공적인 문제 해결에 도달할 수 있었다. 이러한 연구 결과를 바탕으로 본 논문은 수학 문제 해결에서의 시각적 표현의 중요성과 그에 대한 지도 방향에 시사점을 제공한다.

  • PDF

이차곡선의 작도 활동에서 나타난 유추적 사고 (Analogical Reasoning in Construction of Quadratic Curves)

  • 허남구
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제27권1호
    • /
    • pp.51-67
    • /
    • 2017
  • 유추는 학생들의 문제 해결력, 귀납적 추론, 수학적 발견술, 창의성 신장에 도움을 줄 수 있는 수학 교육적으로 유용한 사고 방법이다. 학생들은 서로 다른 수학적 대상에 대해 유사성을 바탕으로 연결함으로써 두 대상 사이의 관계를 인식할 수 있다. 본 연구에서는 예비수학교사들이 이심률의 정의에 따른 이차곡선의 작도 과정에서 드러난 사고의 특징을 유추의 관점에서 분석하였다. 그 결과, 바탕 문제에 관한 수학적 지식의 부재와 바탕 문제의 수학적 지식에 대응하는 목표 문제의 수학적 지식의 부재는 목표 문제의 해결에 도움되지 못하였다. 바탕 문제의 다양한 해결 방법은 목표 문제의 해결에 도움을 주었으며, 일부는 작도 문제의 해결에 있어 적절한 바탕 문제를 설정하고 대수적 방법을 통해 문제를 해결하였다. 마지막으로 잠재적 유사성에 근거한 유추는 새로운 풀이 방법을 발견하는데 도움을 주었다.

일반학생, 영재학생, 예비교사, 현직교사의 다전략 수학 문제해결 전략 분석 (An Analysis on the Mathematical Problem Solving Strategies of Ordinary Students, Gifted Students, Pre-service Teachers, and In-service Teachers)

  • 박만구
    • 한국학교수학회논문집
    • /
    • 제21권4호
    • /
    • pp.419-443
    • /
    • 2018
  • 본 연구의 목적은 일반학생, 영재학생, 예비교사, 현직교사들의 다전략을 가진 수학 문제해결 전략을 분석하여 각 그룹 간의 해결 전략을 비교하여 수학 문제해결 학습 및 지도에 대한 시사점을 얻고자 하는 것이다. 본 연구를 위하여 서울시 초등학교 6학년 일반학생 98명, 초등 영재학생 96명, 초등 예비교사 72명, 초등학교 현직교사 60명을 선정하여 '닭과 돼지' 문제를 제시하고, 30분 동안 자유롭게 문제를 해결하면서 해결 전략을 제시하도록 하였다. 연구의 결과, 영재학생들이 일반학생에 비하여 상대적으로 다양한 해결 전략과 시간적으로 효율적인 전략을 사용하고, 다른 그룹에 비하여 가장 많은 다양한 전략을 사용하였다. 그리고 4가지 이상의 전략을 제시한 비율은 각각 일반학생은 1%, 영재학생 54%, 예비교사 42%, 현직교사 43%로 전략의 다양성에서 영재학생, 현직교사, 예비교사, 일반학생들의 순서로 높게 나타났다. 그리고 개인별로 가장 많은 문제해결 전략의 제시는 일반학생 4가지, 현직교사 6가지, 예비교사 7가지, 영재학생 8가지 순서로 나타났다. 제언으로, 학생들과 교사들에게 다전략을 가지는 양질의 다양한 수학 문제해결 경험의 제공, 문제해결 전략에서 시간적 효율성 추구, 다전략 문제의 개발 및 현장에 보급하여 활용하도록 하는 방안 등을 주장하였다. 후속 연구로, 다전략의 수학 문제를 교실수업에 적용하면서 보다 학생들의 의사소통 및 협력적 문제해결에 대한 협력적 문제해결에 대한 심층적인 연구와 다양한 전략을 평가할 수 있는 방안이 필요하다고 주장하였다. 그리고 이런 연구 결과를 수업연구 방법 등을 활용하여 교사연수에 적극 반영하여, 교사들이 다양한 수준의 학생들의 문제해결지도에서 효과적으로 활용하도록 할 필요가 있음을 제안하였다.

수학 영재아의 문제해결 활동에 대한 메타정의적 관점에서의 특성 분석 (Analysis of characteristics from meta-affect viewpoint on problem-solving activities of mathematically gifted children)

  • 도주원;백석윤
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권4호
    • /
    • pp.519-530
    • /
    • 2019
  • 선행연구에 의하면 수학 학습활동에서 인지적, 정의적 요소들 사이의 상호작용에 기반하는 메타정의는 메타인지와 유사한 방식으로 학습자의 수학적 능력과 긴밀한 역학적 관련성을 유지한다. 본 연구에서는 이러한 특성을 현상학적으로 파악하기 위하여 초등학교 5학년 수학 영재아의 소집단 문제해결 사례를 메타정의적 관점에서 분석하였다. 그 결과 수학 영재아의 인지적, 정의적 특성이 메타정의적 활동을 통해 문제해결 활동에 나타나고 있음을 알 수 있으며, 특히 문제해결자의 정의적 역량은 정서나 태도 형태의 메타정의로 문제해결 활동에 작용함을 알 수 있었다.

PBG(Problem Behavior Graph)를 이용한 수학적 사고 과정 분석 (An Analysis on Mathematical Thinking Processes of Gifted Students Using Problem Behavior Graph)

  • 강은주;홍진곤
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권3호
    • /
    • pp.545-562
    • /
    • 2009
  • PBG(Problem Behavior Graph; 문제해결 행동 그래프)는 인지 심리학자인 Newell과 Simon에 의해 제안된 것으로 연구 대상자가 문제를 해결할 때 인지 활동을 그래프 형식을 이용하여 그려놓은 것이다. 본 연구에서는 중학교에 재학 중인 수학 영재의 수학적 문제 해결에서 이루어지는 인지적인 과정을 추적하기 위하여, 사고구술법(Think-aloud method)으로 추출된 수학 영재 학생들의 사고 과정을 언어 프로토콜로 나타내고 분석한 것을 토대로 PBG를 구성하는 사례를 제시한다. 이를 통하여 수학 영재 학생들이 문제 해결 과정 중 인지 활동으로 거치게 되는 절차와 사고 과정 특성 지도를 살펴보고 대상 학생들이 여러 번의 시행착오 후 전체적인 과정을 수정하며 수행해 나가게 되는 방법과 문제의 최종적인 해결안을 도출해 내는 경로 탐색 과정을 종합적으로 살펴볼 수 있었다.

  • PDF

다전략 수학 문제해결 학습이 초등학생의 수학적 창의성과 수학적 태도에 미치는 영향 (The Effects of Mathematical Problem Solving with Multiple Strategies on the Mathematical Creativity and Attitudes of Students)

  • 김서령;박만구
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제24권4호
    • /
    • pp.175-187
    • /
    • 2021
  • 본 연구의 목적은 초등학교 6학년 학생에게 다전략 수학 문제해결 지도 후, 학생들의 수학적 창의성과 수학적 태도에 미치는 영향을 알아보기 위한 것이다. 본 연구를 위하여 서울시 S초등학교 6학년 학생 49명(실험집단 26명, 비교집단 23명)을 대상으로 19차시의 수업을 진행한 후, 수학적 창의성 및 태도에 대하여 i-STATistics를 사용하여 t-검정을 실시하였다. 연구의 결과 다전략 수학 문제해결 지도를 통한 수학학습은 초등학교 학생들의 수학적 창의성과 그 하위 요소인 유창성, 융통성, 독창성 신장에 효과가 있었다. 또한 다전략 수학 문제해결 지도를 통한 수학학습은 초등학교 학생의 수학적 태도의 하위 요인 중 수학 흥미, 가치, 의지, 효능감 신장에 효과가 있었다. 그리고 다전략 수학 문제해결 지도를 통한 수학학습이 모든 영역에 걸친 수학적 태도의 변화에 긍정적인 영향을 주었다. 연구자들은 연구 대상의 학년과 인원을 확대한 연구와 심층면담과 같은 질적 연구 방법을 포함한 장기간의 후속 연구를 제안하였다.

수학에 있어서 이해와 문제 해결에 관한 소고 (A Note on Understanding and Problem Solving in Mathematics)

  • 강신포
    • 한국초등수학교육학회지
    • /
    • 제3권1호
    • /
    • pp.41-59
    • /
    • 1999
  • 수학 수업에 있어서 문제 해결을 강조하는 것과 이해를 강조하는 것은 상호 버팀이 되는 관계가 된다. 교사들이 문제 해결을 통해서 수업할 때, 문제 해결에 대하여 뿐만 아니라 학생들에게 그들 자신의 이해를 계발시키기 위한 강력하고 중요한 도구를 제시한다. 학생들이 수학을 깊게 그리고 풍부하게 이해하게 됨에 따라 수학 문제를 푸는 데 수학을 이용하는 능력은 더 증가된다.

  • PDF

수학적 정당화가 문제 해결과 의사소통에 미치는 영향 (Effects of Mathematical Justification on Problem Solving and Communication)

  • 정인수
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제16권3호
    • /
    • pp.267-283
    • /
    • 2013
  • 수학적 정당화란 일반적으로 적절한 근거에 기초하여 자신의 주장이 참임을 보이는 과정이라고 할 수 있다. 하지만 교실 실제에서의 수학적 정당화는 사회적 상호작용을 바탕으로 수학적 의사소통을 촉진하는 역할을 한다고 할 수 있다. 이에 본 연구는 수학적 정당화 활동이 학생들의 문제해결과 의사소통 과정에 미치는 영향을 조사하고자 하였다. 이를 위해 수학적 정당화 활동이 강조되는 문제해결 중심 수업을 실시하고 문제 이해 활동, 개별 탐구 활동, 소집단 토의 활동, 전체 논의 과정에서의 수학적 정당화 활동과 의사소통 과정을 분석하였다. 연구 결과 수학적 정당화 활동은 학생들이 다양한 문제해결 방법을 찾는데 도움을 주었고 의사소통 과정을 촉진하였으며, 다양한 표현 방법을 사용하도록 자극하였다. 또한 수학적 정당화 활동은 학생들의 이해를 평가하는 방법이 될 수 있으며, 교실에서의 사회적 관계 및 역동적인 교실 문화를 형성하는데 기여하였다.

초등학생의 창의·융합적 사고 및 문제해결력에 관한 연구 -초등 수학 비(非)구조화된 문제를 중심으로 (A Study on Creativity·Integrated Thinking and Problem Solving of Elementary School Students in ill-Structured Mathematics Problems)

  • 김동희;김민경
    • 대한수학교육학회지:학교수학
    • /
    • 제18권3호
    • /
    • pp.541-569
    • /
    • 2016
  • 본 연구는 비구조화된 문제를 개발하여 초등학교 5학년 한 학급에 비구조화된 문제해결 모형을 적용한 수업에서 나타난 학생들의 모둠별 문제해결 과정에서 창의 융합적 사고 및 문제해결력이 요소 별로 어떻게 나타나는지, 두 역량 간 관계는 어떻게 나타나는지를 분석 평가하였다. 그 결과, 창의 융합적 사고와 문제해결력 역량 모두 본 연구의 분석틀에 의거하여 중 수준으로 나타났다. 또한 창의 융합적 사고 역량과 문제해결력 역량 간 관계는 정적 상관 양상을 보였다.

문제해결과 데카르트의 <기하학> (Problem-solving and Descartes' )

  • 한경혜
    • 한국수학사학회지
    • /
    • 제21권2호
    • /
    • pp.39-54
    • /
    • 2008
  • 이 논문에서는 문제해결의 입장에 서서 수학사에서 중요한 의미를 지닌 데카르트의 <기하학>을 고찰한다. 문제해결의 일반적 원리를 천명한 것만이 아니라 실제로 당면한 문제를 해결하기 위하여 새로운 방법을 찾아내는 것이야말로 데카르트가 문제해결에 관하여 후세에 영향을 크게 남긴 업적이라 할 수 있다. 따라서 본고에서는 그의 방법에 초점을 맞추어 분석하도록 한다.

  • PDF