• Title/Summary/Keyword: 수학적 추론

Search Result 365, Processing Time 0.188 seconds

An Analysis of Mathematical Processes in Elementary Mathematics Curricula of Korea, China, Japan, and the US (한국, 중국, 일본, 미국 초등 수학과 교육과정에서 강조하는 수학적 과정 요소에 대한 분석)

  • Pang, JeongSuk;Lee, JiYoung;Lee, SangMi;Park, YoungEun;Kim, SuKyong;Choi, InYoung;SunWoo, Jin
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.289-308
    • /
    • 2015
  • This study analyzed mathematical processes elaborated in the mathematics curricula of Korea, China, Japan, and the US. Ten mathematical processes were extracted: (a) learning of concepts, principles, laws, and skills; (b) problem solving; (c) reasoning; (d) communication; (e) representation; (f) connections; (g) creativity; (h) character-building; (i) self-directed learning; and (j) positive attitude toward mathematics. This study specified the meaning of such processes and their sub-domains, noticing similarities and differences among the curricula. On the basis of the results, this study includes suggestions for the development of next mathematics curriculum in Korea.

Analysis of Inductive Reasoning Process (귀납적 추론의 과정 분석)

  • Lee, Sung-Keun;Ryu, Heui-Su
    • School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • Problem solving is important in school mathematics as the means and end of mathematics education. In elementary school, inductive reasoning is closely linked to problem solving. The purpose of this study was to examine ways of improving problem solving ability through analysis of inductive reasoning process. After the process of inductive reasoning in problem solving was analyzed, five different stages of inductive reasoning were selected. It's assumed that the flow of inductive reasoning would begin with stage 0 and then go on to the higher stages step by step, and diverse sorts of additional inductive reasoning flow were selected depending on what students would do in case of finding counter examples to a regulation found by them or to their inference. And then a case study was implemented after four elementary school students who were in their sixth grade were selected in order to check the appropriateness of the stages and flows of inductive reasoning selected in this study, and how to teach inductive reasoning and what to teach to improve problem solving ability in terms of questioning and advising, the creation of student-centered class culture and representation were discussed to map out lesson plans. The conclusion of the study and the implications of the conclusion were as follows: First, a change of teacher roles is required in problem-solving education. Teachers should provide students with a wide variety of problem-solving strategies, serve as facilitators of their thinking and give many chances for them ide splore the given problems on their own. And they should be careful entegieto take considerations on the level of each student's understanding, the changes of their thinking during problem-solving process and their response. Second, elementary schools also should provide more intensive education on justification, and one of the best teaching methods will be by taking generic examples. Third, a student-centered classroom should be created to further the class participation of students and encourage them to explore without any restrictions. Fourth, inductive reasoning should be viewed as a crucial means to boost mathematical creativity.

  • PDF

Review on Instrumental Task and Program Characteristics for Measuring and Developing Mathematical Creativity (수학적 창의성 계발을 위한 과제와 수업 방향 탐색)

  • Sung, Chang-Geun;Park, Sung-Sun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.2
    • /
    • pp.253-267
    • /
    • 2012
  • In this paper, we primarily focus on the perspectives about creative process, which is how mathematical creativity emerged, as one aspect of mathematical creativity and then present a desirable task characteristic to measure and program characteristics to develop mathematical creativity. At first, we describe domain-generality perspective and domain-specificity perspective on creativity. The former regard divergent thinking skill as a key cognitive process embedded in creativity of various discipline domain involving language, science, mathematics, art and so on. In contrast the researchers supporting later perspective insist that the mechanism of creativity is different in each discipline. We understand that the issue on this two perspective effect on task and program to foster and measure creativity in mathematics education beyond theoretical discussion. And then, based on previous theoretical review, we draw a desirable characteristic on instruction program and task to facilitate and test mathematical creativity, and present an applicable task and instruction cases based on Geneplor model at the mathematics class in elementary school. In conclusion, divergent thinking is necessary but sufficient to develop mathematical creativity and need to consider various mathematical reasoning such as generalization, ion and mathematical knowledge.

  • PDF

A Study on the Isoperimetric Problem in a Plane focused on the Gestalt's View for the mathematically Gifted Students in the Elementary School (초등수학 영재를 위한 평면에서의 등주문제 고찰 -게슈탈트 관점을 중심으로-)

  • Choi, Keun-Bae
    • School Mathematics
    • /
    • v.11 no.2
    • /
    • pp.227-241
    • /
    • 2009
  • The isoperimetric problem has been known from the time of antiquity. But the problem was not rigorously solved until Steiner published several proofs in 1841. At the time it stood at the center of controversy between analytic and geometric methods. The geometric approach give us more productive thinking (insight, structural understanding) than the analytic method (using Calculus). The purpose of this paper is to analysis and then to construct the isoperimetric problem which can be applied to the mathematically gifted students in the elementary school. The theoretical backgrounds of our analysis about our problem are based on the Gestalt psychology and mathematical reasoning. Our active program about the isoperimetric problem constructed by the Gestalt's view will contribute to improving a mathematical reasoning and to serving structural (relational) understanding of geometric figures.

  • PDF

중등학교에서의 통계 지도 방향 탐색 - 대표값과 분산, 표준편차를 중심으로-

  • Kim, Chang-Il;Jeon, Yeong-Ju
    • Communications of Mathematical Education
    • /
    • v.14
    • /
    • pp.273-295
    • /
    • 2001
  • 통계는 연역적 사고를 강조하는 수학의 다른 영역과 달리 귀납적 추론과 직관적 사고를 요구한다. 따라서 학교 수업에서 학생들이 실제적인 상황을 모델링 할 수 있도록 하며, 주어진 상황에서 자료를 올바르게 산출하고 분석 할 수 있도록 적절한 지도 방법이 필요하다. 그렇지만 학교 수업은 대다수 알고리즘 연습 위주의 통계 학습-지도로 통계적 사고 교육이 제대로 이루어지지 못하고 있다. 이로 인해 학생들은 형식적인 통계 처리에는 익숙하지만 통계 교육의 궁극적 목적인 변이성과 자료를 현명하게 다루는 능력이 부족하다. 본고에서는 피상적인 기계적 계산위주의 통계교육에서 실제적인 자료를 수집하고, 이를 적절히 가공 처리하여 정보의 가치를 높일 수 있는 통계 지도 방향을 탐색해 보고자 한다.

  • PDF

Development of a CAS-Based Virtual Learning System for Personalized Discrete Mathematics Learning (개인 적응형 이산 수학 학습을 위한 CAS 기반의 가상 학습 시스템 개발)

  • Jun, Young-Cook;Kang, Yun-Soo;Kim, Sun-Hong;Jung, In-Chul
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.1
    • /
    • pp.125-141
    • /
    • 2010
  • The aim of this paper is to develop a web-based Virtual Learning System for discrete mathematics learning using CAS (Computer Algebra System), The system contains a series of contents that are common between secondary und university curriculum in discrete mathematics such as sets, relations, matrices, graphs etc. We designed and developed web-based virtual learning contents contained in the proposed system based on Mathematia, webMathematica and phpMath taking advantages of rapid computation and visualization. The virtual learning system for discrete math provides movie lectures and 'practice mode' authored with phpMath in order to enhance conceptual understanding of each movie lesson. In particular, matrix learning is facilitated with conceptual diagram that provides interactive quizzes. Once the quiz results are submitted, Bayesian inference network diagnoses strong and weak parts of learning nodes for generating diagnostic reports to facilitate personalized learning. As part of formative evaluation, the overall responses were collected for future revision of the system with 10 university students.

  • PDF

A design of teaching units for experiencing mathematising of elementary gifted students: inquiry into the isoperimetric problem of triangle and quadrilateral (초등영재 학생의 수학화 학습을 위한 교수단원 설계: 삼·사각형의 등주문제 탐구)

  • Choi, Keunbae
    • Communications of Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.223-239
    • /
    • 2017
  • In this paper, it is aimed to design the teaching units 'Inquiry into the isoperimetric problem of triangle and quadrilateral' to give elementary gifted students experience of mathematization. For this purpose, the teacher and the class observer (researcher) made a discussion about the design of the teaching unit through the analysis of the class based on the thought processes appearing during the problem solving process of each group of students. The following is a summary of the discussions that can give educational implications. First, it is necessary to use mathematical materials to reduce students' cognitive gap. Second, it is necessary to deeply study the relationship between the concept of side, which is an attribute of the triangle, and the abstract concept of height, which is not an attribute of the triangle. Third, we need a low-level deductive logic to justify reasoning, starting from inductive reasoning. Finally, there is a need to examine conceptual images related to geometric figure.

An Analysis on Abduction Type in the Activities Exploring 'Law of Large Numbers' ('큰 수의 법칙' 탐구 활동에서 나타난 가추법의 유형 분석)

  • Lee, Yoon-Kyung;Cho, Cheong-Soo
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-345
    • /
    • 2015
  • This study examined the types of abduction appeared in the exploration activities of 'law of large numbers' in order to figure out relation between statistical reasoning and abduction. When the classroom discourse of students was analyzed by Peirce's abduction, Eco's abduction type and Toulmin's argument pattern, students used overcoded abduction the most in the discourse of abduction. However, there composed a low percent of undercoded abduction leading to various thinking, and creative abduction used to make new principles or theories. By the CAS calculators used in the process of reasoning, students were provided with empirical context to understand the concept of abstract probability, through which they actively participated in the argumentation centered on the reasoning. As a result, it was found that not only to understand the abduction, but to build statistical context with tools in the learning of statistical reasoning is important.

van Hiele 모델에 의한 기하학적 사고력 개발에 관한 연구(0 수준과 1 수준의 조작활동 중심으로)

  • 최창우
    • Education of Primary School Mathematics
    • /
    • v.1 no.1
    • /
    • pp.59-71
    • /
    • 1997
  • 기하학적 사고력 개발이라는 우리의 목표는 궁극적으로 보다 낮은 수준의 학생들에게 보다 높은 수준으로 나아가게 하는 경험을 주는 것이다. 학생들이 보다 높은 수준에서 추론할 수 있도록 하기 위하여 그들이 보다 낮은 수준에서 충분하고 효율적인 학습 경험을 가져야 한다는 것이다. 예를 들면 분수에서 이루어지는 것처럼 기계적인 암기식으로 사물을 학습함으로써 수준(단계)을 뛰어 넘으려고 노력하면은 그들이 학습한 것에 관한 많은 것을 기억할 수 없을 것이다. 조작에 관한 보다 풍부한 경험과 시각적으로 입체감을 주는 설명을 들은 어린이들이 보다 훌륭한 공간 추론을 할 수 있을 것이라 믿는다. 본 고에서는 기하학적인 사고의 개발에 관한 van Hiele 모델이 초등학교에서 기하 수업의 토론을 위한 기초로서 사용되어졌다. 그 모델의 수준들이 묘사되었고 일반적으로 초등학교 아동들의 사고는 0수준과 1수준이라 는 것이 밝혀졌다. 단지 극소수의 아동들이 2수준의 사고에 도달해 있을 것이다. 그러나 만약 초등학교에서의 수업이 기하학적인 개념을 구성하는데 주안점을 둔다면 보다 많은 어린이들이 2 수준의 사고를 보여줄 수 있을 것으로 생각된다. 0 수준의 어린이들은 도형의 형태에 초점이 맞추어져있고 1 수준의 어린이들은 도형의 성질을 이해하는데 에 있다. 2 수준의 사고자는 도형의 포함관계를 이해하고 비공식적으로 추론 할 수 있다. 처음 세 수준에서의 활동들에 대한 지침이 주어져 있으며 0 수준과 1수준에 연관되는 다수의 활동들을 묘사했다. 0수준의 어린이들을 위해 묘사된 활동들은 그들이 2차원 및 3차원의 도형 둘 다를 시각화하는데 도움을 주는 것이다. 1 수준에서 사고하는 학습자들을 위해 묘사된 활동들은 2차원 및 3차원 도형의 성질들을 강조했다. 아울러 본 고에서 언급한 활동들은 상호교수에의 접근을 반영했다. 그러한 접근방식은 학습자들로 하여금 그들의 활동과 의견으로부터 개념을 구성하게 해주며 그들의 활동 결과에 대해 다른 사람들과 의사소통 함으로서 개념을 명확하게 다듬어지게 해줄 수 있을 것이다. 아울러 평가 활동들이 본고의 마지막 부분에 주어져있다. 그러한 활동들은 교사들에게 어린이들의 기하학적인 사고수준을 결정하게 해주며 학습자들로 하여금 수업시간 이외에 보다 높은 사고수준으로 나아가게 해줄 수 있을 것으로 기대된다.

  • PDF

On the Algebraic Concepts in Euclid's Elements (유클리드의 원론에 나타난 대수적 개념에 대하여)

  • 홍진곤;권석일
    • Journal for History of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.23-32
    • /
    • 2004
  • In this paper, Ive investigated algebraic concepts which are contained in Euclid's Elements. In the Books II, V, and VII∼X of Elements, there are concepts of quadratic equation, ratio, irrational numbers, and so on. We also analyzed them for mathematical meaning with modem symbols and terms. From this, we can find the essence of the genesis of algebra, and the implications for students' mathematization through the experience of the situation where mathematics was made at first.

  • PDF