DOI QR코드

DOI QR Code

A design of teaching units for experiencing mathematising of elementary gifted students: inquiry into the isoperimetric problem of triangle and quadrilateral

초등영재 학생의 수학화 학습을 위한 교수단원 설계: 삼·사각형의 등주문제 탐구

  • Choi, Keunbae (Dept. of Math. Edu., Teachers College, Jeju National University)
  • Received : 2017.01.05
  • Accepted : 2017.04.03
  • Published : 2017.05.15

Abstract

In this paper, it is aimed to design the teaching units 'Inquiry into the isoperimetric problem of triangle and quadrilateral' to give elementary gifted students experience of mathematization. For this purpose, the teacher and the class observer (researcher) made a discussion about the design of the teaching unit through the analysis of the class based on the thought processes appearing during the problem solving process of each group of students. The following is a summary of the discussions that can give educational implications. First, it is necessary to use mathematical materials to reduce students' cognitive gap. Second, it is necessary to deeply study the relationship between the concept of side, which is an attribute of the triangle, and the abstract concept of height, which is not an attribute of the triangle. Third, we need a low-level deductive logic to justify reasoning, starting from inductive reasoning. Finally, there is a need to examine conceptual images related to geometric figure.

이 논문에서는 초등 영재학생들에게 수학화의 경험을 주기 위한 교수단원 <삼 사각형의 등주문제>를 설계하는 것이 목적이다. 이를 위해서, 각 조별 학생들의 문제 해결과정 중에 나타나는 사고과정을 바탕으로 교사와 수업관찰자(연구자)가 수업분석을 통하여 교수단원 설계와 관련된 논의를 하였다. 교육적 시사점을 줄 수 있는 논의 내용을 요약하면 다음과 같다. 첫째, 학생들의 인지적인 간극을 줄이기 위한 교구활용을 고려해야한다. 둘째, 삼각형에서 삼각형이 지닌 속성인 변의 개념과 추상적인 속성인 높이 개념과의 관계를 심도 있게 다룰 필요가 있다. 셋째, 귀납적인 추론으로부터 시작하여 추론을 정당화하는 낮은 수준의 연역적인 논리가 필요하다. 끝으로, 도형을 보는 직관(spatial sense)에 영향을 줄 수 있는 도형의 개념이미지를 조사할 필요성이 있다.

Keywords

References

  1. 김진환.박교식 (2006). 예비중등교사의 수학화 경험을 위한 교수단원의 설계: 수 분할 모델의 탐구. 한국학교수학회논문집, 9(1), 57-76. (Kim, J. H. & Park, Kyosik. (2006). A design of teaching units for experiencing mathematising of secondary pre-service teachers: Inquiry into number partition models. Journal of the Korean School Mathematics Society, 9(1), 57-76.)
  2. 박교식 (1992). 함수 개념 지도의 교수현상학적 접근. 서울대학교 대학원 박사학위 논문 (Park, Kyosik. (1992). (The) didactically phenomenological approach in instruction of function concept, Doctoral Thesis, The Graduate School of Education, Seoul National University.)
  3. 정영옥 (1997). Freudenthal의 수학화 학습-지도론. 서울대학교 대학원 박사학위 논문( Chong, Y. O. (1997). A Study on Freudenthal's Mathematising Instruction Theory, Doctoral Thesis, The Graduate School of Education, Seoul National University.)
  4. 최근배 (2009). 초등수학 영재를 위한 평면에서의 등주문제 고찰(게슈탈트 관점을 중심으로). 학교수학, 11(2), 227-241. (Choi, Keunbae. (2009). A Study on the Isoperimetric Problem in a Plane focused on the Gestalt's View for the mathematically gifted Students in the elementary School, Journal of Korea Society of Educational Studies in Mathematics School Mathematics, 11(2), 227-241.)
  5. 최근배 (2011). 초등 영재 교수.학습을 위한 평면에서의 등주문제 내용구성 연구-기하적인 방법을 중심으로-. 한국수학교육학회지 시리즈 A <수학교육>, 50(4), 441-466. (Choi, Keunbae. (2011). A Study on the Teaching Design of the Isoperimetric Problem on a Plane for Mathematically gifted students in the Elementary School -focused on the geometric methods-, J. Korean Soc. Math. Ed. Ser. A: The Mathematical Education, 50(4), 441-466.)
  6. 최근배.채정림 (2014). 등주문제 분석을 통한 공간감각 계발을 위한 학습자료 추출 연구. 학교수학, 16(4), 677-690. (Choi, Keunbae. & Chae, J. L. A Study on the Abstraction of Learning Materials from the Isoperimetric Problem to Develop a Spatial Sense, Journal of Korea Society of Educational Studies in Mathematics School Mathematics, 16(4), 677-690.)
  7. Blasjo, V. (2005). The Evolution of the Isoperimetric Problem, The American Mathematical Monthly, 112, 526-566. https://doi.org/10.2307/30037526
  8. Demjanenko, S. (2008). The Isoperimetric Inequality: A History of the Problem, Proofs and Applications. http://astrophysicsgeek.files.wordpress.com/2008/04/paper_final.pdf
  9. Freudenthal, H. (1973). Mathematics as an educational task. Reidel: Dortrecht.
  10. Freudenthal, H. (1991). Revisiting mathematics education. (China Lectures) Dortrecht: Kluwer Academic Publishers.
  11. Hildebrandt, S. & A. Tromba (1996). The Parsimonious Universe: Shape and Form in the Natural World, Springer-Verlag New York, Inc.
  12. Spivak, M. (1979), A Comprehensive Introduction to Differential Geometry, vol. 4, 2nd ed., Publish or Perish, Berkeley, CA.
  13. Tapia, R. A. (2009). The Remarkable Life of the Isoperimetric Problem: The World's Most Influential Mathematics Problem. http:/ /www.princeton.edu/-wmassey/CAARMS15/PDF/Tapia.pdf
  14. Treibergs, A. (2008). Steiner Symmetrization and Applications, http://www.math.utah.edu/-treiberg/Steiner/SteinerSlides.pdf
  15. Treffers, A. (1987). Tree dimensions: a model of goal and theory description in mathematics education. Reidel: Dortrecht.
  16. Wittmann, E. (1984). Teaching units as the integrating core of mathematics education. Educational Studies in Mathematics, 15(1), 25-36. https://doi.org/10.1007/BF00380437
  17. Wittmann, E. (1995). Mathematics education as a 'design science'. Educational Studies in Mathematics, 29(4), 355-374. https://doi.org/10.1007/BF01273911
  18. Wittmann, E. (2001). Developing Mathematics education in a systemic process. Educational Studies in Mathematics, 48(1), 1-20. https://doi.org/10.1023/A:1015538317850