• Title/Summary/Keyword: 수학적 문제 해결

Search Result 1,138, Processing Time 0.021 seconds

Development and Application of Real-life Problems for Uplifting Problem Solving Skills - Focused on Geometry of Middle School Mathematics Curriculum - (문제해결력 향상을 위한 실생활 문제의 개발과 적용 - 중학교 수학과 교육과정의 도형 영역을 중심으로 -)

  • Pyo, Yong-Soo;Lee, Ji-Won
    • Communications of Mathematical Education
    • /
    • v.21 no.2 s.30
    • /
    • pp.177-197
    • /
    • 2007
  • This study analyzes the theoretical background concerning problem solving, mathematization and real-life problems. Further it examines how middle school mathematics teachers and high school students of first grade recognize the real-life problems provides in textbooks concerning the area of geometry. Following those results found from this analysis, this paper reveals the issues and problems that we noticed through the analysis of real-life problems from textbooks, level 8 and level 9, Also we suggest the application of them along with the development of real-life problems for students' uplifting problem solving skills.

  • PDF

Study on Problem Solving in Elementary School Mathematics through Comparative Analysis (종횡비교분석을 통한 초등학교 수학의 문제해결에 대한 검토)

  • Chang, Hye-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.2
    • /
    • pp.207-231
    • /
    • 2009
  • The purpose of this study is to examine the state of problem solving in Korean elementary mathematics. To do this, we considered the meaning of problem and problem solving in mathematics education, and analyzed the mathematics curricula in the longitudinal-latitudinal dimensions respectively. The longitudinal one consists in examining and comparing the all-time Korean elementary mathematics curricula. Meanwhile the latitudinal one consists in examining and comparing the elementary mathematics curricula of Singapore, the United Kingdom, Japan, and France. As a result of analysis, we selected ten sieves for analysing Korean elementary mathematics textbooks according to the 7th mathematics curriculum. By the analysis, we conclude that we teach problem solving quite positively in school mathematics relative to another countries, in particular we have to reconsider some issues including dealing problem solving as a independent content not a process integrated in other contents.

  • PDF

The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude (공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과)

  • Shin, Keun-Mi;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.401-420
    • /
    • 2010
  • The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.

  • PDF

A Study on Solving Triangle Construction Problems Related with Radius of Escribed Circle Using Algebraic Method (대수적 방법을 이용한 방접원에 관련된 삼각형 작도문제의 해결 연구)

  • Gong, Seon-Hye;Han, In-Ki
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.3
    • /
    • pp.399-420
    • /
    • 2008
  • In this paper we solve various triangle construction problems related with radius of escribed circle using algebraic method. We describe essentials and meaning of algebraic method solving construction problems. And we search relation between triangle construction problems, draw out 3 base problems, and make hierarchy of solved triangle construction problems. These construction problems will be used for creative mathematical investigation in gifted education.

  • PDF

Investigating on the Building of 'Mathematical Process' in Mathematics Curriculum (수학과 교육과정에서 '수학적 과정'의 신설에 대한 소고)

  • Park, Hye-Suk;Na, Gwi-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.503-523
    • /
    • 2010
  • The current mathematics curriculum are consist of the following domains: 'Characteristics', 'Objectives', 'Contents', 'Teaching and learning method', and 'Assessment'. The mathematics standards which students have to learn in the school are presented in the domain of 'Contents'. 'Contents' are consist of the following sub-domains: 'Number and Operation', 'Geometric Figures', 'Measures', 'Probability and Statistics', and 'Pattern and Problem-Solving' (Elementary School); 'Number and Operation', 'Geometry', 'Letter and Formula', 'Function', and 'Probability and Statistics' (Junior and Senior High School). These sub-domains of 'Contents' are dealing with mathematical subjects, except 'Problem-Solving' at the elementary school level. In this study, the sub-domain of 'mathematical process' was suggested in an equal position to the typical sub-domains of 'Contents'.

The structure of teacher discourse in the process of solving mathematic problems (수학 문제 해결 과정에서의 교사 담론 구조)

  • Choi, Sang-Ho
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.273-286
    • /
    • 2022
  • The purpose of this study is to analyze the teacher's discourse structure in the process of solving mathematics problems based on the communication between teachers and students. To achieve this goal, we observed a semester class by a teacher with experience who practiced a teaching method that creates mathematical meanings based on students' participation in class. In order to solve problems based on the participation of students in each class, the similarities between the processes of creating the structure of the discourse were analyzed. As a result of the analysis, the teacher was able to focus on the goal in the process of starting a discourse, and in the process of developing the discourse, the problem was solved by focusing on understanding the problem. In the process of arranging the discourse, the problem-solving process and the core of the result is summarized. Based on the possibility of generalization of the teacher discourse structure, it will be able to provide practical help in the process of implementing a teaching method that solves mathematics problems by communicating with students in the future.

An Analysis of Intuitive Thinking of Elementary Students in Mathematical Problem Solving Process (수학 문제해결 과정에 나타난 초등학생들의 직관적 사고 분석)

  • You, Dae-Hyun;Kang, Wan
    • Education of Primary School Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • The purposes of this study are to analyze elementary school student's intuitive thinking in the process of mathematical problem solving and to analyze elementary school student's errors of intuitive thinking in the process of mathematical problem solving. According to these purposes, the research questions can be set up as followings. (1) How is the state of illumination of the elementary school student's intuitive thinking in the process of mathematical problem solving? (2) What are origins of errors by elementary school student's intuitive thinking in the process of mathematical problem solving? In this study, Bogdan & Biklen's qualitative research method were used. The subjects in this study were 4 students who were attending the elementary school. The data in this study were 'Intuitine Thinking Test', records of observation and interview. In the interview, the discourses were recorded by sound and video recording. These were later transcribed and analyzed in detail. The findings of this study were as follows: First, If Elementary school student Knows the algorithm of problem, they rely on solving by algorithm rather than solving by intuitive thinking. Second, their problem solving ability by intuitive model are low. What is more they solve the problem by Intuitive model, their Self- Evidence is low. Third, in the process of solving the problem, intuitive thinking can complement logical thinking. Last, in the concept of probability and problem of probability, they are led into cognitive conflict cause of subjective interpretation.

  • PDF

A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level (방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구)

  • ChoiKoh, Sang-Sook;Jeon, Sung-Hoon
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.109-128
    • /
    • 2009
  • This study aimed to investigate students' learning process by examining their perception process of problem structure and mathematization, and further to suggest an effective teaching and learning of mathematics to improve students' problem-solving ability. Using the qualitative research method, the researcher observed the collaborative learning of two middle school students by providing problem-posing activities of five lessons and interviewed the students during their performance. The results indicated the student with a high achievement tended to make a similar problem and a new problem where a problem structure should be found first, had a flexible approach in changing its variability of the problem because he had advanced algebraic thinking of quantitative reasoning and reversibility in dealing with making a formula, which related to developing creativity. In conclusion, it was observed that the process of problem posing required accurate understanding of problem structures, providing students an opportunity to understand elements and principles of the problem to find the relation of the problem. Teachers may use a strategy of simplifying external structure of the problem and analyzing algebraical thinking necessary to internal structure according to students' level so that students are able to recognize the problem.

  • PDF

A Classroom Activities of the Problem Solving Using Visualized Materials In Pre-service Mathematics Teacher's Education (예비 수학 교사 교육에서 시각적 자료를 이용한 문제 해결 지도 사례)

  • Kim, Nam-Hee
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.493-506
    • /
    • 2010
  • In this study, we conducted classroom activities that are exploring and explaining visualized materials for problem solving of school mathematics with pre-service teachers in 2007~2009. After finishing these classroom activities, pre-service teachers recorded an afternote that includes changes of their thinking about mathematics and mathematics education through these activities in this study. We collected various opinions of pre-service mathematics teachers. From the analysis these data, we searched educational effects of our classroom activities. Through conducting the practice like these classroom activities of our study, pre-service mathematics teachers will have an opportunity of a practical training that supports the teaching of mathematical problem-solving. Moreover their PCK will be enhanced. Also, They will learn a good way to realize the aim of school mathematics curriculum.

  • PDF

Using the Cabri3D Program for Enhancing Problem Solving Ability (문제해결력 신장을 위한 Cabri3D의 교육적 활용)

  • Kim, Nam-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.4
    • /
    • pp.345-366
    • /
    • 2006
  • In this study, we investigated the methods of using the Cabri3D program for education of problem solving in school mathematics. Cabri3D is the program that can represent 3-dimensional figures and explore these in dynamic method. By using this program, we can see mathematical relations in space or mathematical properties in 3-dimensional figures vidually. We conducted classroom activity exploring Cabri3D with 15 pre-service leachers in 2006. In this process, we collected practical examples that can assist four stages of problem solving. Through the analysis of these examples, we concluded that Cabri3D is useful instrument to enhance problem solving ability and suggested it's educational usage as follows. In the stage of understanding the problem, it can be used to serve visual understanding and intuitive belief on the meaning of the problem, mathematical relations or properties in 3-dimensional figures. In the stage of devising a plan, it can be used to extend students's 2-dimensional thinking to 3-dimensional thinking by analogy. In the stage of carrying out the plan, it can be used to help the process to lead deductive thinking. In the stage of looking back at the work, it can be used to assist the process applying present work's result or method to another problem, checking the work, new problem posing.

  • PDF