• Title/Summary/Keyword: 수학적 과제 유형

Search Result 74, Processing Time 0.082 seconds

A Study on Analyzing Solution Spaces of Open-ended Tasks in Elementary Mathematics (초등 수학 개방형 과제의 해법 공간 분석 연구)

  • Kim, NamGyun;Kim, Su Ji;Song, Dong Hyun;Oh, Min Young;Lee, Hyun Jung
    • Education of Primary School Mathematics
    • /
    • v.25 no.1
    • /
    • pp.81-100
    • /
    • 2022
  • The purpose of this study is to develop a framework for analyzing the solution spaces of open-ended task and to explore their usefulness and applicability based on the analysis of solution spaces constructed by students. Based on literature reviews and previous studies, researchers developed a framework for analyzing solution spaces (OMR-framework) organized into subspaces of outcome spaces, method spaces, representation spaces which could be used in structurally analyzing students' solutions of open-ended tasks. In our research, we developed open-ended tasks which had various outcomes and methods that could be solved by using the concepts of factors and multiples and assigned the tasks to 181 elementary school fifth and sixth graders. As a result of analyzing the student's solution spaces by applying the OMR-framework, it was possible to systematically analyze the characteristics of students' understanding of the concept of factors and multiples and their approach to reversible and constructive thinking. In addition to formal mathematical representations, various informal representations constructed by students were also analyzed. It was revealed that each space(outcome, method, and representation) had a unique set of characteristics, but were closely interconnected to each other in the process. In conclusion, it can be said that method of analyzing solution spaces of open-ended tasks of this study are useful for systemizing and analyzing the solution spaces and are applicable to the analysis of the solutions of open-ended tasks.

Analysis of the Relationship Between Preservice Teachers' Mathematical Understanding in Visual Expressions and Problem-Posing Ability: Focusing on Multiplication and Division of Fractions (예비교사의 시각적 표현에서의 수학적 이해와 문제 만들기 능력의 관련성 분석: 분수의 곱셈과 나눗셈을 중심으로)

  • Son, Taekwon
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.219-236
    • /
    • 2023
  • This study examined the relationship between preservice teachers' mathematical understanding and problem posing in fractions multiplication and division. To this purpose, 41 preservice teachers performed visual representation and problem posing tasks for fraction multiplication and division, measured their mathematical understanding and problem posing ability, and examined the relationship between mathematical understanding and problem posing ability using cross-tabulation analysis. As a result, most of the preservice teachers showed conceptual understanding of fraction multiplication and division, and five types of difficulties appeared. In problem posing, most of the preservice teachers failed to pose a math problem that could be solved, and four types of difficulties appeared. As a result of cross-tabulation analysis, the degree of mathematical understanding was related to the ability to pose problems. Based on these results, implications for preservice teachers' mathematical understanding and problem posing were suggested.

Seventh Graders' Proof Schemes and Their Characteristics in Geometric Tasks (기하증명과제에서 나타나는 중학교 1학년 학생들의 증명스키마와 그 특징)

  • Byun, Gyu Mi;Chang, Kyung Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.2
    • /
    • pp.191-205
    • /
    • 2017
  • The purpose of this study is to investigate the types and characteristics of the Seventh Graders' proofs. Harel, & Sowder's proof schemes were used to analyze the subjects' responses. As a result of the study, there was a difference in the type of proof schemes used by the students depending on the academic achievement level. While the proportion of students using a transformative proof scheme decreased from the top to the bottom, the proportion of students using inductive (measure) proof scheme increased. In addition, features of each type of proof schemes were shown, such as using informal codes in the proof process, and dividing a given picture into a specific ratio in the problem. Based on this, we extracted four meaningful conclusions and discussed implications for proof teaching and learning.

A Study on Authentic Assessment Model and Example Tools Development of Mathematics Teaching and Learning (수학교육의 교수-학습 참평가 모형 및 예시 도구 개발 - 프로젝트법을 중심으로 -)

  • Son, Jung-Hwa;Kang, Ok-Gi
    • School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.109-134
    • /
    • 2012
  • The purpose of this study is to develop authentic assessment model and example tools of mathematics teaching and learning. By reviewing literature researches, we set up the definition of authentic assessment in mathematics education, checked the criterian of authentic assessment tasks and mathematical activities. We searched various assessment models of mathematics teaching and learning, project assessment proceeding model, and criterian of project assessment, and checked various project tasks of the authentic assessment. And we developed authentic assessment model and example tools of mathematics teaching and learning. The model is applied project tasks in the form of being integrated with class to high school students, with high school mathematics especially. Furthermore, we carried the test of content validity for a validity of developed tasks for experts in studies of mathematics education. The result is that authentic assessment model and example tools of mathematics teaching and learning has an significance in mathematics education and can be used to judge whether students are doing 'real' mathematics or not, keeping the applicability in the form of being integrated with class.

  • PDF

Teachers' Decision and Enactment of Their Content Knowledge Assessed Through Problem Posing - A U.S. Case (문제 만들기를 통해 알아본 교사의 내용지식 사용에 대한 결정과 수행 - 미국 사례를 중심으로)

  • Noh, Jihwa
    • Communications of Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.153-166
    • /
    • 2017
  • 164 preservice elementary teachers' decision and enactment of their knowledge of fraction multiplication were examined in a context where they were asked to write a story problem for a multiplication problem with two proper fractions. Participants were selected from an entry level course and an exit level course of their teacher preparation program to reveal any differences between the groups as well as any recognizable patterns within each group and overall. Patterns and tendencies in writing story problems were identified and analyzed. Implications of the findings for teaching and teacher education are discussed.

A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks (개방형 과제를 활용한 수학 영재아 수업 사례 분석)

  • Park Hwa-Young;Kim Soo-Hwan
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.117-145
    • /
    • 2006
  • Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.

  • PDF

Analysis of problem solving competency and types of tasks in elementary mathematics textbooks: Challenging/Thinking and inquiry mathematics in the domain of number and operation (초등 수학교과서의 문제해결 역량 및 과제 유형 분석: 수와 연산 영역의 도전/생각 수학과 탐구 수학을 중심으로)

  • Yeo, Sheunghyun;Suh, Heejoo;Han, Sunyoung;Kim, Jinho
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.431-449
    • /
    • 2021
  • Elementary mathematics textbooks present contents for enhancing problem solving competency. Still, teachers find teaching problem solving to be challenging. To understand the supports textbooks are suggesting, this study examined tasks from the challenging/thinking and inquiry mathematics. We analyzed 288 mathematical activities based on an analytic framework from the 2015 revised mathematics curriculum. Then, we employed latent class analysis to classify 83 mathematical tasks as a new approach to categorize tasks. As a result, execution of the problem solving process was emphasized across grade levels but understanding of problems was varied by grade levels. In addition, higher grade levels had more opportunities to be engaged in collaborative problem solving and problem posing. We identified three task profiles: 'execution focus', 'collaborative-solution focus', 'multifaceted-solution focus'. In Grade 3, about 80% of tasks were categorized as the execution profile. The multifaceted-solution was about 40% in the thinking/challenging mathematics and the execution profile was about 70% in Inquiry mathematics. The implications for developing mathematics textbooks and designing mathematical tasks are discussed.

Exploration on Mathematical Tasks on Function Content in MiC 3 level Textbook (MiC 교과서의 수학적 과제의 인지적 요구 정도 분석 -함수 내용을 중심으로-)

  • Hwang, Hye Jeang;Park, Hyun-Pa
    • Communications of Mathematical Education
    • /
    • v.27 no.4
    • /
    • pp.449-472
    • /
    • 2013
  • Instructional materials including problem situations or problems or tasks on real-life situations are considered as an important and significant factor to lead a successful math instruction. MiC Textbook is a representative one showing good examples and tasks including fluent realistic situations on the basis of the background of the Freudenthal's theory. This study explores concretely and in detail the type of level of mathematical tasks, by the subject of MiC Textbook. To accomplish this, this study reconstructs and establishes an elaborated analysis framework using 'the cognitive demand level' suggested by Stein, et, al. The cognitive demand level is comprized of four elements such as Memorization Tasks, Procedures Without Connections Tasks, Procedures With Connections Tasks, and Doing Mathematics Tasks. Memorization Tasks and Procedures Without Connections Tasks are considered as low level tasks, and Procedures With Connections Tasks and Doing Mathematics Tasks are as high level tasks. MiC Textbook is comprized of the four areas of 'number', 'algebra', 'geometry and measurement', and 'data analysis and statistics'. This study deals with the tasks relevant to Function content dealt with in MiC 3 level Textbook, and explore the level of cognitive demands on each task.

Type and Role of Cognition Strategies in Spatial Tasks: Focusing on Visual Discrimination and Visual Memory Abilities (공간 과제에서 인지 전략의 유형과 역할: 시각적 변별과 기억 능력을 중심으로)

  • Lee, JiYoon
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.571-598
    • /
    • 2015
  • This study aimed to assess the spatial cognition strategies and roles taken by students in the process of solving spatial tasks. For the analysis, this study developed two spatial tests based on the mental rotation test, which were taken by 63 students in their final year in elementary schools. The results of this study showed that in terms of the method of approaching the tasks, students took the comprehensive approach and the partial approach. When solving the tasks, the students were shown to use the imagery thinking or analytic thinking method. In terms of perspective, the students rotated the object or change their perspectives. A comparison of the methods used by the students revealed that when approaching the tasks, the group of students who chose the partial approach had higher scores. In terms of solving the tasks the analytic thinking method, and in terms of perspective, changing perspectives were shown to be more effective. Such effective methods were used more frequently in discrimination tasks than in recognition tasks, and in more complicated items, than in less complicated items. In conclusion, the results of this study suggested that the partial, analytic approach and the change of perspectives are useful strategies in solving tasks which require high cognitive effort.

Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line (척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석)

  • Park, Eun-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • Size/scale is a central idea in the science curriculum, providing explanations for various phenomena. However, few studies have been conducted to explore student understanding of this concept and to suggest instructional approaches in scientific contexts. In contrast, there have been more studies in mathematics, regarding the use of number lines to relate the nature of numbers to operation and representation of magnitude. In order to better understand variations in student conceptions of size/scale in scientific contexts and explain learning difficulties including alternative conceptions, this study suggests an approach that links mathematics with the analysis of student conceptions of size/scale, i.e. the analysis of mathematical structure and reasoning for a number line. In addition, data ranging from high school to college students facilitate the interpretation of conceptual complexity in terms of mathematical development of a number line. In this sense, findings from this study better explain the following by mathematical reasoning: (1) varied student conceptions, (2) key aspects of each conception, and (3) potential cognitive dimensions interpreting the size/scale concepts. Results of this study help us to understand the troublesomeness of learning size/scale and provide a direction for developing curriculum and instruction for better understanding.