Type and Role of Cognition Strategies in Spatial Tasks: Focusing on Visual Discrimination and Visual Memory Abilities

공간 과제에서 인지 전략의 유형과 역할: 시각적 변별과 기억 능력을 중심으로

  • Lee, JiYoon (Korea Foundation for the Advancement of Science and Creativity)
  • Received : 2015.10.12
  • Accepted : 2015.11.16
  • Published : 2015.11.30

Abstract

This study aimed to assess the spatial cognition strategies and roles taken by students in the process of solving spatial tasks. For the analysis, this study developed two spatial tests based on the mental rotation test, which were taken by 63 students in their final year in elementary schools. The results of this study showed that in terms of the method of approaching the tasks, students took the comprehensive approach and the partial approach. When solving the tasks, the students were shown to use the imagery thinking or analytic thinking method. In terms of perspective, the students rotated the object or change their perspectives. A comparison of the methods used by the students revealed that when approaching the tasks, the group of students who chose the partial approach had higher scores. In terms of solving the tasks the analytic thinking method, and in terms of perspective, changing perspectives were shown to be more effective. Such effective methods were used more frequently in discrimination tasks than in recognition tasks, and in more complicated items, than in less complicated items. In conclusion, the results of this study suggested that the partial, analytic approach and the change of perspectives are useful strategies in solving tasks which require high cognitive effort.

본 연구에서는 공간 과제에서 학생들이 사용하는 공간 인지 전략의 유형과 역할을 살펴보고자 Shepard & Metzler(1971)의 심적 회전 검사(mental rotation test)를 토대로 시각적 변별과 기억 능력을 측정하는 두가지 공간 과제를 개발하여, 초등학교 6학년 학생 63명을 대상으로 연구를 수행하였다. 연구 결과, 학생들은 접근 방법 측면에서 전체적 접근 전략과 부분적 접근 전략을, 처리 방법 측면에서 심상적 처리 전략과 분석적 처리 전략을, 준거 기준 측면에서 대상 변환 전략과 관점 변환 전략을 사용하였다. 사용 전략에 따른 검사 점수를 비교한 결과 접근 방법 측면에서는 부분적 접근 전략을 사용한 집단이, 처리 방법 측면에서는 분석적 처리 전략을 사용한 집단이, 준거 기준 측면에서는 관점 변환 전략을 사용한 집단의 검사점수가 더 높게 나타났다. 또한 이러한 전략은 변별 과제보다 재인 과제에서, 복잡도가 낮은 문항보다는 복잡도가 높은 문항에서 더 빈번하게 사용되었다. 따라서 부분적 접근전략, 분석적 처리 전략, 관점 변환 전략은 인지적 노력이 많이 요구되는 문제 상황에서 체계적으로 문제를 해결하도록 돕는 유용한 전략임을 확인할 수 있었다.

Keywords

References

  1. 교육과학기술부 (1997). 초등학교 7차 교육과정. 서울: 대한교과서 주식회사
  2. 교육과학기술부(2011). 수학과 교육과정 (교육과학기술부 고시 제2011-361호[별책8])
  3. 이혜경, 박성희 (2007). 유아의 공간 능력 증진을 위한 이론적 고찰. 유아교육.보육복지연구, 11(1), 69-92.
  4. 홍혜경 (1999). 유아의 공간 능력 증진을 위한 교육과정 모색. 유아교육연구, 3(1), 119-138.
  5. Allen, M. J. & Hogeland, R. (1978). Spatial problem-solving strategies as functions of sex. Perceptual and Motor Skills, 47(2), 348-350. https://doi.org/10.2466/pms.1978.47.2.348
  6. Amorim, M. A. & Isableu, B. (2006). Embodied Spatial Transformations: "Body Analogy" for the Mental Rotation of Objects. Journal of Experimental Psychology: General, 135(3), 327-347. https://doi.org/10.1037/0096-3445.135.3.327
  7. Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: Freeman.
  8. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-45. https://doi.org/10.1146/annurev.psych.59.103006.093639
  9. Bishop, A. J. (1983), 'Space and Geometry', in R. Lesh, M. Landau (eds.), Acquisition of Mathematics Concepts and Processes. Academic Press Inc., Orlando, Florida, USA, 175-203.
  10. Ekstrom, R. B., French, J. W. & Harman, H. H. (1976). Manual for Kit of Factor Referenced Cognitive Tests. Princeton, NJ: Educational Testing Service.
  11. French, J. W. (1965). The relationship of problemsolving styles to the factor composition of tests. Educational and Psychological Measurement, 25, 9-28. https://doi.org/10.1177/001316446502500102
  12. Gal, H. & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74, 163-183. https://doi.org/10.1007/s10649-010-9232-y
  13. Gardner, H. (1998). 다중지능의 이론과 실제. (김영희, 이경희 역), 양서원. (영어 원작은 1993년출판).
  14. Gorgorio, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics, 35, 207-231. https://doi.org/10.1023/A:1003132603649
  15. Guilford, J. P. & Zimmerman, W. S. (1948). The Guilford-Zimmerman Aptitude Survey. Journal of Applied Psychology, 32(1), 24-35. https://doi.org/10.1037/h0063610
  16. Guilford, J. P. & Lacey, J. I. (1947). Printed Classification Tests, A.A.F. Washington, D.C.: U.S. Government Printing Office, 1947.
  17. Hegarty, M., Stieff, M. & Dixon, B. L. (2013) Cognitive change in mental models with experience in the domain of organic chemistry, Journal of Cognitive Psychology, 25(2), 220-228. https://doi.org/10.1080/20445911.2012.725044
  18. Hoffer, A. (1977). Mathematics resource project: Geometry and visualization. Palo Alto: Creative Publication.
  19. Kessler, K. & Wang, H. (2012). Spatial Perspective Taking is an Embodied Process, but Not for Everyone in the Same Way: Differences Predicted by Sex and Social Skills Score. Spatial Cognition & Computation: An Interdisciplinary Journal, 12, 133-158. https://doi.org/10.1080/13875868.2011.634533
  20. Kozhevnikov, M. & Hegarty, M. (2001). A dissociation between object manipulation spatialability and spatial orientation ability. Memory & Cognition, 29(5), 745-756. https://doi.org/10.3758/BF03200477
  21. Kosslyn, S. M. (1994) Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT Press
  22. Lajoie, S. P. (2003). Individual differences in spatial ability_Developing technologies to increase strategy awareness and skills. Educational Psychologist, 38(2), 115-125. https://doi.org/10.1207/S15326985EP3802_6
  23. Linn. M. C. & Kyllonen, P. C. (1984). The field dependence-independence construct: Some, one. or none. Journal of Educational Psvchologv, 73, 261-273.
  24. Margaret, W. M. (2015). 인지심리학. (민윤기 역), 제8판. 박학사. (영어 원문은 2013년 출판)
  25. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86, 889-918. https://doi.org/10.1037/0033-2909.86.5.889
  26. Michaelides, M. P. (2002). Students' Solution Strategies in Spatial Rotation Tasks. Unpublished master's dissertation, University of Cambridge.
  27. Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In Pateman, N., Dougherty, B., & Zilliox, J. (Eds.), Proc. 27th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 105-109). Honolulu, Hawaii.
  28. National Council of Teachers of Mathematics. (2000) Principles and standards for school mathematics, VA: NCTM.
  29. Piaget, J. (1969). The mechanisms of perception. New York: Basic Books.
  30. Schultz, K. (1991). The contribution of solution strategy to spatial performance. Canadian Journal of Psychology, 45, 474-491. https://doi.org/10.1037/h0084301
  31. Shepard, R. N. & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171(3972), 701-703. https://doi.org/10.1126/science.171.3972.701
  32. Stieff, M., Ryu, M., Dixon, B., & Hegarty, M. (2012). The role of spatial ability and strategy preference during spatial problem solving in organic chemistry. Journal of Chemical Education, 89, 854-859. https://doi.org/10.1021/ed200071d
  33. Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17, 219-234. https://doi.org/10.1016/j.learninstruc.2007.01.012
  34. Stieff, M. (2005). Teaching and learning with three dimensional representations. John K. Gibert(ed.), Visualization in Science Education, 93-118. 2005 Springer. Printed in the Netherlands.
  35. Thurstone, L. L. (1944). A factorial study of perception. Chicago: University of Chicago Press.
  36. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three dimensional spatial visualization. Perceptual and Motor Skills, 47, 599-604. https://doi.org/10.2466/pms.1978.47.2.599
  37. Wheatly, G. Quick Draw. http://www.learnnc.org/lp/pages/787
  38. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636. https://doi.org/10.3758/BF03196322
  39. Wraga, M., Shephard, J. M., Church, J. A., Inati, S. & Kosslyn, S. M. (2005). Imagined rotations of self versus objects: an fMRI study. Neuropsychologia, 43, 1351-1361. https://doi.org/10.1016/j.neuropsychologia.2004.11.028
  40. WSOY (2011). 핀란드 초등수학교과서 LASKUTAITO1-2. 솔빛길.
  41. Yackel, E. & Wheatley, G. W. (1990). Promoting visual imagery in young pupis. Arithmetic Teacher, 37(6), 52-58.
  42. Zacks, J. M. & Tversky, B. (2005) Multiple Systems for Spatial Imagery: Transformations of Objects and Bodies, Spatial Cognition & Computation: An Interdisciplinary Journal, 5(4), 271-306. https://doi.org/10.1207/s15427633scc0504_1
  43. Zacks, J. M., Vettel, J. M. & Michelon, P. (2003). Imagined viewer and object rotations dissociated with event-related FMRI. Journal of Cognitive Neuroscience, 15(7). 1002-1018. https://doi.org/10.1162/089892903770007399