• Title/Summary/Keyword: 비밀키 암호

Search Result 292, Processing Time 0.026 seconds

Security Evaluation Against Collision-based Power Analysis on RSA Algorithm Adopted Exponent Splitting Method (지수 분할 기법이 적용된 RSA 알고리듬에 대한 충돌 전력 분석 공격 안전성 평가)

  • Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.985-991
    • /
    • 2015
  • The user's secret key can be retrieved by various side channel leakage informations occurred during the execution of cryptographic RSA exponentiation algorithm which is embedded on a security device. The collision-based power analysis attack known as a serious side channel threat can be accomplished by finding some collision pairs on a RSA power consumption trace. Recently, an RSA exponentiation algorithm was proposed as a countermeasure which is based on the window method adopted combination of message blinding and exponent splitting. In this paper, we show that this countermeasure provides approximately $2^{53}$ attack complexity, much lower than $2^{98}$ insisted in the original article, when the window size is two.

Study for improving attack Complexity against RSA Collision Analysis (RSA 충돌 분석 공격 복잡도 향상을 위한 연구)

  • Sim, Bo-Youn;Won, Yoo-Seung;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.261-270
    • /
    • 2015
  • In information security devices, such as Smart Cards, vulnerabilities of the RSA algorithm which is used to protect the data were found in the Side Channel Analysis. The RSA is especially vulnerable to Power Analysis which uses power consumption when the algorithm is working. Typically Power Analysis is divided into SPA(Simple Power Analysis) and DPA(Differential Power Analysis). On top of this, there is a CA(Collision Analysis) which is a very powerful attack. CA makes it possible to attack using a single waveform, even if the algorithm is designed to secure against SPA and DPA. So Message blinding, which applies the window method, was considered as a countermeasure. But, this method does not provide sufficient safety when the window size is small. Therefore, in this paper, we propose a new countermeasure that provides higher safety against CA. Our countermeasure is a combination of message and exponent blinding which is applied to the window method. In addition, through experiments, we have shown that our countermeasure provides approximately 124% higher attack complexity when the window size is small. Thus it can provide higher safety against CA.

The Authentication and Key Management Method based on PUF for Secure USB (PUF 기반의 보안 USB 인증 및 키 관리 기법)

  • Lee, Jonghoon;Park, Jungsoo;Jung, Seung Wook;Jung, Souhwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.944-953
    • /
    • 2013
  • Recently, a storage media is becoming smaller and storage capacity is also becoming larger than before. However, important data was leaked through a small storage media. To solve these serious problem, many security companies manufacture secure USBs with secure function, such as data encryption, user authentication, not copying data, and management system for secure USB, etc. But various attacks, such as extracting flash memory from USBs, password hacking or memory dump, and bypassing fingerprint authentication, have appeared. Therefore, security techniques related to secure USBs have to concern many threats for them. The basic components for a secure USB are secure authentication and data encryption techniques. Though existing secure USBs applied password based user authentication, it is necessary to develop more secure authentication because many threats have appeared. And encryption chipsets are used for data encryption however we also concern key managements. Therefore, this paper suggests mutual device authentication based on PUF (Physical Unclonable Function) between USBs and the authentication server and key management without storing the secret key. Moreover, secure USB is systematically managed with metadata and authentication information stored in authentication server.

Weaknesses and Improvement of User Authentication Scheme against Smart-Card Loss Attack (스마트 카드 분실 공격에 안전한 사용자 인증 스킴의 취약점 및 개선방안)

  • Choi, Younsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • With the rapid development of Internet and communication network technology, various studies had proceeded to develop the technology of wireless sensor networks. Authentication schemes for user and sensor are critical and important security issue to use wireless sensors legally. First, Das introduce a user authentication scheme using smart card and password for wireless sensor networks, various studies had proceeded. Chem et al. suggested a secure user authentication scheme against smart card loss attack but Chen et al. scheme does not still resolve some security vulnerability such as perfect forward secrecy, session key exposure by gateway node, anonymity, and the password check. To resolve the problems, this paper proposes a security enhanced user authentication using the fuzzy extraction, elliptic curves cryptography and dynamic ID and analyzes the security.

Security Scheme for Prevent malicious Nodes in WiMAX Environment (WiMAX 환경에서 악의적 노드 예방을 위한 보안 기법)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.382-389
    • /
    • 2009
  • As the use of mobile device is popularized, the needs of variable services of WiMAX technique and the importance of security is increasing. There is a problem that can be easily attacked from a malicious attack because the action is achieved connectionlessly between neighbor link establishing procedure and TEK exchange procedure in mobile WiMAX even though typical 1 hop network security technique is adapted to WiMAX for satisfying these security requirement. In this paper, security connected mechanism which safely connects neighbor link establishing procedure of WiMAX and TEK exchange procedure additional to the basic function provided by IEEE 802.16e standard to satisfy security requirement of mobile WiMAX is proposed. The proposed mechanism strengthens the function of security about SS and BS by application random number and private value which generated by SS and BS to public key of neighbor link establishing procedure and TEK exchange procedure. Also, we can prevent from inside attack like man-in-the-middle which can occur in the request of TEK through cryptographic connection of neighbor link establishing procedure and TEK exchange procedure.

Secure Mobile-in-Vehicle System with CBC-MAC authentication (CBC-MAC 방식을 적용한 보안 모바일기기 제어시스템)

  • Hwang, Jae-Young;Choi, Dong-Wook;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2657-2662
    • /
    • 2010
  • Demand on information security in mobile devices based control system grows rapidly with a view to counteracting information hacking and leakage. Among these techniques, encryption and authentication are most common. This paper presents CBC-MAC (Cipher Block Chaining-Message Authentication Code) based mobile devices control system. The system is termed as Secure Mobile in Vehicle (SMIV)We use CBC-MAC that is one of the most efficient authentication modes to protect information against any malicious attacks. By sharing the secret key of CBC-MAC between the transmitter and receiver, it asserts authentic information. The proposed system is verified in such a way that we develop mobile devices control system, apply the CBC-MAC algorithm to the control system and validate the received data. Unlike conventional systems where the development of control mechanism in mobile devices based control systems is main concern, this proposed system offers a secure communication link of the data in mobile devices control system and therefore would be useful to the design and implementation of various mobile devices based control systems.

OpenID Based User Authentication Scheme for Multi-clouds Environment (멀티 클라우드 환경을 위한 OpenID 기반의 사용자 인증 기법)

  • Wi, Yukyeong;Kwak, Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.215-223
    • /
    • 2013
  • As cloud computing is activated, a variety of cloud services are being distributed. However, to use each different cloud service, you must perform a individual user authentication process to service. Therefore, not only the procedure is cumbersome but also due to repeated authentication process performance, it can cause password exposure or database overload that needs to have user's authentication information each cloud server. Moreover, there is high probability of security problem that being occurred by phishing attacks that result from different authentication schemes and input scheme for each service. Thus, when you want to use a variety of cloud service, we proposed OpenID based user authentication scheme that can be applied to a multi-cloud environment by the trusted user's verify ID provider.

A study of a System Call Interface for Supporting File Partial Encryption (파일 부분 암호화 지원을 위한 시스템 호출에 관한 연구)

  • Seo, Hye-in;Seong, Jeong-gi;Kim, Eun-gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.549-551
    • /
    • 2017
  • There are currently various file encryption systems and applications for encryption and storage of file on disk. However, the existing file encryption solutions handle encryption and decryption all at once by file or directory. In this study, we propose a system call supporting partial encryption function of the file. The user sets the partial encryption of the file by using system call interface, and writes the contents. And then the data is encrypted and stored on the disk. Also if the user sets the decryption and reads the data, the necessary part of data is decrypted by applying the user setting. According to the user setting, only the necessary part is encrypted and stored on a storage medium. As a result, the information in a secret level can be saved efficiently and securely.

  • PDF

WiMAX Security Mechanism for Minimizing Performance load of Base Station (베이스 스테이션의 성능부하를 최소화하기 위한 WiMAX 보안 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1875-1882
    • /
    • 2008
  • Nowadays, usage of mobile unit which has a characteristic of low cost and high efficiency is being generalized because of frequent use of internet-based variable service and application in IEEE 802.16 WiMAX. A study for handling a security problem of high speed internet service is rising while the use of a mobile is being generalized. This paper suggests a security mechanism which provides safety from certification load of SS and a security attack as well as a basic function which is provided from IEEE 802.16e standard to satisfy security demand of IEEE802.16 WiMAX. The proposed mechanism exchangeskey material information for TEK and data code by using 난수(?) and secret value created by SS and BS, also reduces capacity load of BS not to perform an additional certificate procedure of BS by using the early certification information and certificate of SS.

Novel Vulnerability against Dummy Based Side-Channel Countermeasures - Case Study: XMEGA (더미 기반 부채널 분석 대응기법 신규 취약점 - Case Study: XMEGA)

  • Lee, JongHyeok;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.287-297
    • /
    • 2019
  • When cryptographic algorithms are implemented to provide countermeasures against the side-channel analysis, designers frequently employ the combined countermeasures between the first-order masking scheme and hiding schemes. Their combination can be enough to offer security and efficiency. However, if dummy operations can be distinguished from real operations, an attacker can extract the secret key with lower complexity than the intended attack complexity by the designer inserting the dummy operations. In this paper, we categorize types of variables used in a dummy operation when C language is employed. Then, we present the novel vulnerability that can distinguish dummy operations for all cases where the hiding schemes are applied using different types of variables. Moreover, the countermeasure is provided to prevent the novel vulnerability.