• 제목/요약/키워드: 부트스트래핑 기법

검색결과 21건 처리시간 0.02초

농업생산법인의 경영효율성 분석: 부트스트래핑 기법 활용 (An Analysis of the Efficiency of Agricultural Business Corporations Using the Stochastic DEA Model)

  • 이상호;김충실;권경섭
    • 벤처창업연구
    • /
    • 제6권4호
    • /
    • pp.137-152
    • /
    • 2011
  • 슘페터식 혁신은 이제 제조, 서비스산업을 넘어 농산업에서도 나타나고 있다. 농산업은 과거 가족농 중심의 단순생산체제를 탈피하여, 생산과 유통 전반으로 기업화되어 가는 경향이 나타나고 있는데, 이는 농산업부분에서의 낮은 생산성과 부가가치를 제고하기 위한 생산방식과 조직형태의 혁신이라고 볼 수 있다. 본 연구는 우리나라 농산업의 새로운 시도로 도입된 농업법인 그중에서도 농업생산법인의 생산성 수준을 파악하고 정책적 시사점을 도출하기 위하여 자료포락방법의 개선된 형태인 부트트래핑 자료포락방법을 활용하여 분석하였다. 본 연구의 주요 발견점은 다음과 같다. 분석대상 농업생산법인 중 효율성 값이 1인 효율적인 법인 수는 18.06%에 불과하며 효율성 값이 0.5 미만인 비효율적인 농업생산법인 수는 기술효율성에서는 30.92%, 순수기술효율성에서는 18.93%, 규모의 효율성에 있어서는 3.32%로 나타나 상당수의 농업생산법인이 비효율적인 상태에서 운영되고 있다. 이러한 분석결과는 농업생산법인이 농산업의 생산성 향상을 위한 방안으로 도입되기는 했지만 실질적 생산성 정도는 저조하다는 것을 의미하는 것으로, 농업생산법인의 생산성 제고를 위한 정책적, 전략적 차원의 개선책이 모색되어야 함을 보여 시사한다.

  • PDF

0.5V까지 재구성 가능한 0.8V 10비트 60MS/s 19.2mW 0.13um CMOS A/D 변환기 (A Re-configurable 0.8V 10b 60MS/s 19.2mW 0.13um CMOS ADC Operating down to 0.5V)

  • 이세원;유시욱;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제45권3호
    • /
    • pp.60-68
    • /
    • 2008
  • 본 논문에서는 10비트 해상도를 가지면서 0.5V부터 1.2V까지의 전원 전압에서 10MS/s 이상 100MS/s 까지 재구성이 가능한 저전력 2단 파이프라인 ADC를 제안한다. 제안하는 ADC는 0.5V의 전원 전압 조건에서도 10비트 해상도를 얻기 위해 입력단 SHA 회로에는 낮은 문턱 전압을 가지는 소자를 사용한 게이트-부트스트래핑 기법 기반의 샘플링 스위치를 사용하였으며, SHA 회로와 MDAC 회로에 사용된 증폭기에도 넓은 대역폭을 얻기 위해 입력단에는 낮은 문턱 전압을 가지는 소자를 사용하였다. 또한 온-칩으로 집적된 조정 가능한 기준 전류 발생기는 10비트의 해상도를 가지고, 넓은 영역의 전원 전압에서 동작할 수 있도록 증폭기의 정적 및 동적 성능을 최적화시킨다. MDAC 회로에는 커패시터 열의 소자 부정합에 의한 영향을 최소화하기 위해서 인접신호에 덜 민감한 전 방향 대칭 구조의 레이아웃 기법을 제안하였다. 한편, flash ADC 회로 블록에는 비교기에서 소모되는 전력을 최소화하기 위해 스위치 기반의 바이어스 전력 최소화 기법을 적용하였다. 시제품 ADC는 0.13um CMOS 공정으로 제작되었으며, 측정된 최대 DNL 및 INL은 각각 0.35LSB 및 0.49LSB 수준을 보인다. 또한, 0.8V의 전원 전압 60MS/s의 동작 속도에서 최대 SNDR 및 SFDR이 각각 56.0dB, 69.6dB이고, 19.2mW의 전력을 소모하며, ADC의 칩 면적은 $0.98mm^2$이다.

저전력 멀티미디어 응용을 위한 10b 100 MSample/s $1.4\;mm^2$ 56 mW 0.18 um CMOS A/D 변환기 (A 10b 100 MSample/s $1.4\;mm^2$ 56 mW 0.18 urn CMOS A/D Converter for Low-Power Multimedia Applications)

  • 민병한;박희원;채희성;사두환;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제42권12호
    • /
    • pp.53-60
    • /
    • 2005
  • 본 논문에서는 저 전력 멀티미디어 응용을 위한 10b 100 MS/s $1.4\;mm^2$ CMOS A/D 변환기(ADC)를 제안한다. 제안하는 ADC는 해상도 및 속도 사양을 만족시키면서, 면적 및 전력 소모를 최소화하기 위해 기존의 다단 구조가 아닌 2단 파이프라인 구조를 사용하였다. 그리고 10 비트 해상도에서 1.2 Vp-p의 단일 및 차동 입력 신호 처리 대역폭을 넓히기 위해 입력 샘플-앤-홀드 증폭기에는 게이트-부트스트래핑 회로를 적용하며, 6 비트 해상도를 필요로 하는 두 번째 단의 flash ADC에는 오픈-루프 오프셋 샘플링 기법을 적용하였다. 또한 커패시터 등 소자 부정합에 의해 해상도에 크게 영향을 줄 수 있는 MDAC의 커패시터에는 3차원 완전 대칭 구조를 갖는 레이아웃 기법을 제안하였다. 기준 전류/전압 발생기는 온-칩으로 집적하여 잡음 에너지를 줄였으며, 필요시 선택적으로 다른 크기의 기준 전압을 외부에서 인가하도록 설계하였다. 제안하는 10b 시제품 ADC는 0.18 um CMOS 공정으로 제작되었고, 측정된 DNL 및 INL은 각각 0.59 LSB, 0.77 LSB 수준을 보여준다. 또한 100 MS/s의 샘플링 속도에서 SNDR 및 SFDR이 각각 54 dB, 62 dB 수준을 보였으며, 전력 소모는 56 mW이다.

최대 엔트로피 기법을 이용한 한국 연근해 고등어 최적 관리에 관한 연구 (Optimal Management of Mackerel in Korea: A Maximum Entropy Approach)

  • 박윤선;권오상
    • 자원ㆍ환경경제연구
    • /
    • 제28권2호
    • /
    • pp.277-306
    • /
    • 2019
  • 고등어는 국내에서 가장 많이 소비되는 어종 중 하나로 최근 기후변화, 해양 생태계 악화, 과잉 어획 등으로 인해 자원 고갈에 대한 우려가 커지고 있다. 본 연구에서는 이러한 고등어의 최적어획량, 자원량, 어획노력량 등을 최대 엔트로피 기법을 이용하여 추정하는 것을 목적으로 한다. 또한 부트스트래핑을 이용하여 최대 엔트로피 추정치의 통계적 유의성을 확인하고자 하였다. 분석 결과 고등어 자원량은 1990년대 중반 최대로 증가하였다가 2000년대 이후 점차 감소하는 것으로 나타났다. 또한 자원량 대비 어획량을 비교하면 1990년대 이전에는 28.5%, 1990년대 약 43.1%, 2000년 이후 36.3%로 추정되었다. 이는 1990년대 남획에 가까운 어획으로 고등어 자원량이 감소하였다가 정부의 수산 자원 관리 정책으로 인해 차츰 자원이 회복되었음을 의미한다. 그럼에도 불구하고 본고가 추정한 사회적 최적 자원량이나 최대지속가능어획량과 비교하면 현재 자원 스톡은 이 두 기준치를 달성하지 못해 현재보다 더 강화된 어획량 관리제도가 필요함이 확인된다.

고화질 영상 시스템 응용을 위한 12비트 130MS/s 108mW $1.8mm^2$ 0.18um CMOS A/D 변환기 (A 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for High-Quality Video Systems)

  • 한재열;김영주;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제45권3호
    • /
    • pp.77-85
    • /
    • 2008
  • 본 논문에서는 TFT-LCD 디스플레이 및 디지털 TV 시스템 응용과 같이 고속으로 동작하며 고해상도, 저전력 및 소면적을 동시에 요구하는 고화질 영상시스템 응용을 위한 12비트 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC를 제안한다. 제안하는 ADC는 3단 파이프라인 구조를 사용하여 고해상도와 높은 신호처리 속도에서 전력 소모 및 면적을 최적화하였다. 입력단 SHA 회로에는 Nyquist 입력에서도 12비트 이상의 정확도로 신호를 샘플링하기 위해 게이트-부트스트래핑 회로를 적용함과 동시에 트랜스컨덕턴스 비율을 적절히 조정한 2단 증폭기를 사용하여 12비트에 필요한 높은 DC 전압 이득과 충분한 위상 여유를 갖도록 하였으며, MDAC의 커패시터 열에는 높은 소자 매칭을 얻기 위하여 각각의 커패시터 주위를 공정에서 제공하는 모든 금속선으로 둘러싸는 3차원 완전 대칭 구조를 갖는 레이아웃 기법을 적용하였다. 한편, 제안하는 ADC에는 전원 전압 및 온도에 덜 민감한 저전력 기준 전류 및 전압 발생기를 온-칩으로 집적하여 잡음을 최소화하면서 시스템 응용에 따라 선택적으로 다른 크기의 기준 전압 값을 외부에서 인가할 수 있도록 하였다. 제안하는 시제품 ADC는 0.18um n-well 1P6M CMOS 공정으로 제작되었으며, 측정된 DNL 및 INL은 12비트 해상도에서 각각 최대 0.69LSB, 2.12LSB의 수준을 보이며, 동적 성능으로는 120MS/s와 130MS/s의 동작 속도에서 각각 최대 53dB, 51dB의 SNDR과 68dB, 66dB의 SFDR을 보여준다. 시제품 ADC의 칩 면적은 $1.8mm^2$이며 전력 소모는 1.8V 전원 전압과 130MS/s에서 108mW이다.

설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형 (Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection)

  • 문건두;김경재
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.241-265
    • /
    • 2023
  • 기업의 부실 예측 모델은 기업의 재무 상태를 객관적으로 모니터링하는 데 필수적인 도구 역할을 한다. 적시에 경고하고 대응 조치를 용이하게 하며 파산 위험을 완화하고 성과를 개선하기 위한 효과적인 관리 전략을 수립할 수 있도록 지원한다. 투자자와 금융 기관은 금융 손실을 최소화하기 위해 부실 예측 모델을 이용한다. 기업 부실 예측을 위한 인공지능(AI) 기술 활용에 대한 관심이 높아지면서 이 분야에 대한 광범위한 연구가 진행되고 있다. 해석 가능성과 신뢰성이 강조되며 기업 부실 예측에서 설명 가능한 AI 모델에 대한 수요가 증가하고 있다. 널리 채택된 SHAP(SHapley Additive exPlanations) 기법은 유망한 성능을 보여주었으나 변수 수에 따른 계산 비용, 처리 시간, 확장성 문제 등의 한계가 있다. 이 연구는 전체 데이터 세트를 사용하는 대신 부트스트랩 된 데이터 하위 집합에서 SHAP 값을 평균화하여 변수 수를 줄이는 새로운 변수 선택 접근법을 소개한다. 이 기술은 뛰어난 예측 성능을 유지하면서 계산 효율을 향상시키는 것을 목표로 한다. 해석 가능성이 높은 선택된 변수를 사용하여 랜덤 포레스트, XGBoost 및 C5.0 모델을 훈련하여 분류 결과를 얻고자 한다. 분류 결과는 고성능 모델 설계를 목표로 soft voting을 통해 생성된 앙상블 모델의 분류 정확성과 비교한다. 이 연구는 1,698개 한국 경공업 기업의 데이터를 활용하고 부트스트래핑을 사용하여 고유한 데이터 그룹을 생성한다. 로지스틱 회귀 분석은 각 데이터 그룹의 SHAP 값을 계산하는 데 사용되며, SHAP 값 평균은 최종 SHAP 값을 도출하기 위해 계산된다. 제안된 모델은 해석 가능성을 향상시키고 우수한 예측 성능을 달성하는 것을 목표로 한다.

고성능 디스플레이 응용을 위한 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC (An 8b 240 MS/s 1.36 ㎟ 104 mW 0.18 um CMOS ADC for High-Performance Display Applications)

  • 이경훈;김세원;조영재;문경준;지용;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제42권1호
    • /
    • pp.47-55
    • /
    • 2005
  • 본 논문에서는 각종 고성능 디스플레이 등 주로 고속에서 저전력과 소면적을 동시에 요구하는 시스템 응용을 위한 임베디드 코어 셀로서의 8b 240 MS/s CMOS A/D 변환기 (ADC)를 제안한다. 제안하는 ADC는 아날로그 입력, 디지털 출력 및 전원을 제외한 나머지 모든 신호는 칩 내부에서 발생시켰으며, 본 설계에서 요구하는 240 MS/s 사양에서 면적 및 전력을 동시에 최적화하기 위해 2단 파이프라인 구조를 사용하였다. 특히 입력 단에서 높은 입력 신호 대역폭을 얻기 위해 개선된 부트스트래핑기법을 제안함과 동시에 잡음 성능을 향상시키기 위해 제안하는 온-칩 전류/전압 발생기를 온-칩 RC 저대역 필터와 함께 칩 내부에 집적하였으며, 휴대 응용을 위한 저전력 비동작 모드 등 각종 회로 설계 기법을 적절히 응용하였다. 제안하는 시제품 ADC는 듀얼모드 입력을 처리하는 DVD 시스템의 핵심 코어 셀로 집적되었으며, 성능 검증을 위해 0.18um CMOS 공정으로 별도로 제작되었고, 측정된 DNL과 INL은 각각 0.49 LSB, 0.69 LSB 수준을 보여준다. 또한, 시제품측정 결과 240 MS/s 샘플링 속도에서 최대 53 dB의 SFDR을 얻을 수 있었고, 입력 주파수가 Nyquist 입력인 120 MHz까지 증가하는 동안 38 dB 이상의 SNDR과 50 dB 이상의 SFDR을 유지하였다. 시제품 ADC의 칩 면적은 1.36 ㎟이며, 240 MS/s 에서 측정된 전력 소모는 104 mW이다.

3G 통신 시스템 응용을 위한 0.31pJ/conv-step의 13비트 100MS/s 0.13um CMOS A/D 변환기 (A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems)

  • 이동석;이명환;권이기;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제46권3호
    • /
    • pp.75-85
    • /
    • 2009
  • 본 논문에서는 two-carrier W-CDMA 응용과 같이 고해상도, 저전력 및 소면적을 동시에 요구하는 3G 통신 시스템 응용을 위한 13비트 100MS/s 0.13um CMOS ADC를 제안한다. 제안하는 ADC는 4단 파이프라인 구조를 사용하여 고해상도와 높은 신호처리속도와 함께 전력 소로 및 면적을 최적화하였다. 입력 단 SHA 회로에는 면적 효율성을 가지멸서 고속 고해상도로 동작하는 게이트-부트스트래핑 회로를 적용하여 1.0V의 낮은 전원 전압동작에서도 신호의 왜곡없이 Nyquist 대역 이상의 입력 신호를 샘플링할 수 있도록 하였다. 입력 단 SHA 및 MDAC에는 낮은 임피던스 기반의 캐스코드 주파수 보상 기법을 적용한 2단 증폭기 회로를 사용하여 Miller 주파수 보상 기법에 비해 더욱 적은 전력을 소모하면서도 요구되는 동작 속도 및 안정적인 출력 조건을 만족시키도록 하였으며, flash ADC에 사용된 래치의 경우 비교기의 입력 단으로 전달되는 킥-백 잡음을 줄이기 위해 입력 단과 출력 노드를 클록 버퍼로 분리한 래치 회로를 사용하였다. 한편, 제안하는 시제품 ADC에는 기존의 회로와는 달리 음의 론도 계수를 갖는 3개의 전류만을 사용하는 기준 전류 및 전압 발생기를 온-칩으로 집적하여 잡음을 최소화하면서 시스템 응용에 따라 선택적으로 다른 크기의 기준 전압 값을 외부에서 인가할 수 있도록 하였다. 제안하는 시제품 ADC는 0.13um 1P8M CMOS 공정으로 제작되었으며, 측정된 DNL 및 INL은 13비트 해상도에서 각각 최대 0.70LSB, 1.79LSB의 수준을 보이며, 동적 성능으로는 100MS/s의 동작 속도에서 각각 최대 64.5dB의 SNDR과 78.0dB의 SFDR을 보여준다. 시제품 ADC의 칩 면적은 $1.22mm^2$이며, 1.2V 전원 전압과 100MS/s의 동작 속도에서 42.0mW의 전력을 소모하여 0.31pJ/conv-step의 FOM을 갖는다.

높은 정확도를 가진 집적 커페시터 기반의 10비트 250MS/s $1.8mm^2$ 85mW 0.13un CMOS A/D 변환기 (A 10b 250MS/s $1.8mm^2$ 85mW 0.13um CMOS ADC Based on High-Accuracy Integrated Capacitors)

  • 사두환;최희철;김영록;이승훈
    • 대한전자공학회논문지SD
    • /
    • 제43권11호
    • /
    • pp.58-68
    • /
    • 2006
  • 본 논문에서는 차세대 디지털 TV 및 무선 랜 등과 같이 고속에서 저전압, 저전력 및 소면적을 동시에 요구하는 고성능 집적시스템을 위한 10b 250MS/s $1.8mm^2$ 85mW 0.13um CMOS A/D 변환기 (ADC)를 제안한다. 제안하는 ADC는 요구되는 10b 해상도에서 250MS/s의 아주 빠른 속도 사양을 만족시키면서, 면적 및 전력 소모를 최소화하기 위해 3단 파이프라인 구조를 사용하였다. 입력단 SHA 회로는 게이트-부트스트래핑 (gate-bootstrapping) 기법을 적용한 샘플링 스위치 혹은 CMOS 샘플링스위치 등 어떤 형태를 사용할 경우에도 10비트 이상의 해상도를 유지하도록 하였으며, SHA 및 두개의 MDAC에 사용되는 증폭기는 트랜스컨덕턴스 비율을 적절히 조정한 2단 증폭기를 사용함으로써 10비트에서 요구되는 DC 전압 이득과 250MS/s에서 요구되는 대역폭을 얻음과 동시에 필요한 위상 여유를 갖도록 하였다. 또한, 2개의 MDAC의 커패시터 열에는 소자 부정합에 의한 영향을 최소화하기 위해서 인접신호에 덜 민감한 향상된 3차원 완전 대칭 구조의 커패시터 레이아웃 기법을 제안하였으며, 기준 전류 및 전압 발생기는 온-칩 RC 필터를 사용하여 잡음을 최소화하고, 필요시 선택적으로 다른 크기의 기준 전압을 외부에서 인가할 수 있도록 설계하였다. 제안하는 시제품 ADC는 0.13um 1P8M CMOS 공정으로 제작되었으며, 측정된 DNL 및 INL은 각각 최대 0.24LSB, 0.35LSB 수준을 보여준다. 또한, 동적 성능으로는 200MS/s와 250MS/s의 동작 속도에서 각각 최대 54dB, 48dB의 SNDR과 67dB, 61dB의 SFDR을 보여준다. 시제품 ADC의 칩 면적은 $1.8mm^2$이며 전력 소모는 1.2V 전원 전압에서 최대 동작 속도인 250MS/s일 때 85mW이다.

45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC (A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology)

  • 안태지;박준상;노지현;이문교;나선필;이승훈
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.122-130
    • /
    • 2013
  • 본 논문에서는 주로 고속 디지털 통신시스템 응용을 위해 고해상도, 저전력 및 소면적을 동시에 만족하는 45nm CMOS 공정으로 제작된 4단 파이프라인 구조의 12비트 100MS/s ADC를 제안한다. 입력단 SHA 회로에는 높은 입력 주파수를 가진 신호가 인가되어도 12비트 이상의 정확도로 샘플링할 수 있도록 게이트-부트스트래핑 회로가 사용된다. 입력단 SHA 및 MDAC 증폭기는 요구되는 DC 이득 및 높은 신호스윙을 얻기 위해 이득-부스팅 구조의 2단 증폭기를 사용하며, 넓은 대역폭과 안정적인 신호정착을 위해 캐스코드 및 Miller 주파수 보상기법을 선택적으로 적용하였다. 채널길이 변조현상 및 전원전압 변화에 의한 전류 부정합을 최소화하기 위하여 캐스코드 전류 반복기를 사용하며, 소자의 부정합을 최소화하기 위하여 전류 반복기와 증폭기의 단위 넓이를 통일하여 소자를 레이아웃 하였다. 또한, 제안하는 ADC에는 전원전압 및 온도 변화에 덜 민감한 저전력 기준 전류 및 전압 발생기를 온-칩으로 집적하는 동시에 외부에서도 인가할 수 있도록 하여 다양한 시스템에 응용이 가능하도록 하였다. 제안하는 시제품 ADC는 45nm CMOS 공정으로 제작되었으며 측정된 DNL 및 INL은 각각 최대 0.88LSB, 1.46LSB의 값을 가지며, 동적성능은 100MS/s의 동작속도에서 각각 최대 61.0dB의 SNDR과 74.9dB의 SFDR을 보여준다. 시제품 ADC의 면적은 $0.43mm^2$ 이며 전력소모는 1.1V 전원전압 및 100MS/s 동작속도에서 29.8mW이다.