이 논문은 '경관'과 '기호'표상에 근거한 지역학흡의 실제를 제시하기 위한 것이다. '경관'과 '기호' 표상은 오랜 역사적인 과정을 통해서 그 지역에서 구성된 지역적인 담론을 보다 구체적인 형태로 보여주는 것이므로 지역정체성 향상에 크게 기여할 수 있다. 오랜 역사적인 과정 속에서 형성된 지역담론은 각각의 시대적인 맥락에 따라 다양한 층위를 지니고 있다. 따라서 지역 담론은 지역의 변화된 모습에 대한 이해뿐만 아니라 오늘날의 지역을 이해하는 데에도 도움을 줄 수 있어 지역학습의 중요한 지표가 될 수 있다. 나아가 '경관'과 '기호'표상은 그 지역 사람들의 생활세계를 구성하고 있는 중요한 요소이므로 학습자의 삶과 유리되지 않는 지역학습을 할 수 있다는 점에서 커다란 의미가 있다고 본다.
Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
Journal of the Korean Chemical Society
/
v.64
no.1
/
pp.30-37
/
2020
The purpose of this study was to identify the problems faced by students in sub-microscopic representation of acid-base reactions. Herein, we selected 30 students of 12th grade science classes, who had studied various acid-base models. In order to investigate the sub-microscopic representation ability of the students, we developed nine items related to various contexts, such as one type of solute and solvent, two types of solutes and solvent, cases with water as solvent or with nonaqueous solvents. For all items, we consistently observed lack of concept of chemical change. In context of aqueous and nonaqueous solutions, the frequency of lack of concept of chemical bonding was high if ammonia was the solute or solvent. Moreover, the frequency of lack of concept related to the degree of electrolytic dissociation was high. Therefore, chemistry teachers should understand that students' ability to sub-microscopic representation of acid-base reactions can be enhanced by analyzing the difficulties faced by the students in solving diverse acid-base problems.
The number line model, which intuitively marks numerical magnitudes in space, is widely utilized to help in understanding the magnitudes that fractions and decimals represent. The study analyzed 6th graders' understanding of fractions and decimals, their problem solving strategies, and whether individual differences in the flexibility of various strategy uses are associated with the accuracy of numerical representation, calculation fluency, and overall mathematical achievement. As a result of the study, students showed relatively lower accuracy in representing fractions and decimals on a number line compared to natural numbers, especially for fractions with odd denominators compared to even denominators, and for two-digit decimals compared to three-digit decimals. Regarding strategy use, students primarily used benchmark, segmentation, and approximation strategies for fractions, and benchmark, rounding, and transformation strategies for decimals sequentially. Lastly, as students used various representation strategies for fractions, their accuracy in representing fractions and their overall mathematical achievement scores showed significantly better outcomes. Taken together, we suggest the need for careful instruction on different interpretations of fractions, the place value of decimals, and the meaning of zero in decimal places. Moreover, we discuss instructional methods that integrate the number line model and its diverse representation strategies to enhance students' understanding of fractions and decimals.
This study analyzes modes related to use of graph representation that appears to solve high school students quadratic function problem based on the graph using modes of Chauvat. It was examined the extent of understanding of the quadratic function of students through the flexibility of the representation of the Bannister (2014) from the analysis. As a result, the graph representation mode in which a high school students are mainly used is a nomographic specific mode, when using operational mode, it was found to be an error. The flexibility of Bannister(2014) that were classified to the use of representation from the point of view of the object and the process in the understanding of the function was constrained operation does not occur between the two representations in understanding the function in the process of perspective. Based on these results, the teaching on use graph representation for the students in classroom is required and the study of teaching and learning methods can understand the function from various perspectives is needed.
A goal of this study is figuring out how fraction learning centered on various representation activities influences the fraction comprehension and mathematical attitudes. The study focused on 33 4th-grade students of B elementary school in Seoul. In the study, 15 fraction learning classes comprising enactive, iconic, and symbolic representations took place over 6 weeks. After the classes, the ratio of the students who achieved relational understanding increased and the students averagely recorded 90 pt or more on the fraction comprehension test I, II and III. Two-dependent samples t-test was conducted to analyze a significant difference in mathematical attitudes between pre-test and post-test. On the test result, there was the meaningful difference with 0.01 level of significance. To conclude, the fraction learning centered on various representation activities improves students' relational understanding and fraction understanding. In addition, the fraction learning centered on various representation activities gives positive influences on mathematical attitudes since it increases learning orientation, self-control, interests, value cognition, and self-confidence of the students and decreases fears of the students.
The purpose of the study was to investigate the effects of the use of RNP curriculum based on Lesh translation model on third grade students' understandings of fraction concepts and problem solving ability. Students' conceptual understandings of fractions and problem solving ability were improved by the use of the curriculum. Various manipulative experiences and translation processes between and among representations facilitated students' conceptual understandings of fractions and contributed to the development of problem solving strategies. Expecially, in problem situations including fraction ordering which was not covered during the study, mental images of fractions constructed by the experiences with manipulatives played a central role as a problem solving strategy.
The purpose of this study is to investigate characteristics of students' problem solving processes based on their mathematical thinking styles and thus to provide implications for teachers regarding how to employ multiple representations. In order to analyze these characteristics, 202 university freshmen were recruited for a paper-and-pencil survey. The participants were divided into four groups on a mathematical-thinking-style basis. There were two students in each group with a total of eight students being interviewed. Results show that mathematical thinking styles are related to defining a mathematical concept, problem solving in relation to representation, and translating between mathematical representations. These results imply methods of utilizing multiple representations in learning and teaching mathematics by embodying Dienes' perceptual variability principle.
In this paper, the ability to use mathematical representations in solving math problem was analyzed according to student assessment levels using 113 first-year high school students, and the characteristics of their representation usage according to student assessment levels were also examined. For this purpose, problems were presented that could be solved using various mathematical representations, and the students were asked to solve them using a maximum of three different methods. Also, based on the comparative analysis results of a paper evaluation, six students were selected and interviewed, and the reasons for their representation usage differences were analyzed according to their student assessment levels. The results of the analysis show that over 50% of high ranking students used two or more representations in all questions to solve problems, but with middle ranking students, there were deviations depending on the difficulty of the questions. Low ranking students failed to use representation in diverse ways when solving problems. As for characteristics of symbol usage, high ranking students preferred using formulas and used mathematical representations efficiently while solving problems. In contrast, middle and low ranking students mostly used tables or pictures. Even when using the same representations, high ranking students' representations were expressed in a more structurally refined manner than those by middle and low ranking students.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.297-303
/
1999
오늘날 전산망을 통해 대량의 다양한 언어 정보가 일상 언어로 교환되고 있다. 따라서 대량의 이러한 정보를 효율적으로 처리할 수 있는 언어 정보 처리 시스템이 필요하다. Hausser (1999)와 이기용(1999)는 그러한 언어 정보 처리 시스템으로 데이터베이스 의미론을 주장하였다. 이 의미론의 특징은 자연언어의 정보 처리 시스템 구축에 상업용 데이터베이스 관리 시스템을 활용한다는 점이다. 이때 야기되는 문제 중의 하나가 표상(representation)의 문제이다. 그 이유는 언어학의 표상 방법이 데이터베이스 관리 시스템의 표상 방법과 다르기 때문이다. 특히, 관계형 데이터베이스 관리 시스템(RDBMS)에서는 테이블 (table) 형식으로 각종 정보를 표시한다. 따라서, 이 논문의 주안점(主眼点)은 언어학에서 흔히 쓰이는 표상 방법, 즉 문장의 통사 구조를 표시하는 수형(tree)이나 의미 구조를 표시하는 논리 형태(logical form), 또는 단어나 구의 특성을 나타내는 자질 구조(feature structure)를 테이블 형식으로 대체하는 방법을 모색하는 것이다. 더욱이 관계형 데이터베이스 관리 시스템에서는 테이블에 대한 각종 연산, 특히 두 테이블을 연결(link)하는 작업이 가능하고 이런 연산 과정을 통해 정보를 통합하거나 여과할 수 있기 때문에 관련 정보를 하나의 테이블에 표상하거나 정보 자료의 분산 저장과 자료의 순수성을 유지하는 것이 용이하다. 이 논문은 곧 이러한 점을 가급적 간단한 예를 들어 설명하는 데 그 목적이 있다.
Paul Churchland(1989) suggests the theory of representation from the results of cognitive biology and connectionist AI studies. According to the theory, our representations of the diverse phenomena in the world can be represented as the positions of phase state spaces with the actions of the neurons or of the assembly of neurons. He insists connectionist AI neural networks can have the semantical category systems to recognize the world. But Fodor and Lepore(1996) don't look the perspective bright. From their points of view, the Churchland's theory of representation stands on the base of Quine's holism, and the network semantics cannot explain how the criteria of semantical content similarity could be possible, and so cannot the theory. This thesis aims to excavate which one is the better between the perspective of the theory and the one of Fodor and Lepore's. From my understandings of state space theory of representation, artificial nets can coordinates the criteria of contents similarity by the learning algorithm. On the basis of these, I can see that Fodor and Lepore's points cannot penetrate the Churchlands' theory. From the view point of the theory, we can see how the future's artificial systems can have the conceptual systems recognizing the world. Therefore we can have the perspectives what cognitive scientists have to focus on.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.