Browse > Article
http://dx.doi.org/10.5012/jkcs.2020.64.1.30

Lack of Sub-microscopic Representation Ability of 12th Grade Science Students in Various Acid and Base Problem Solving Processes  

Park, Chul-Yong (Kongju National Universtiy High School)
Won, Jeong-Ae (Daejeon Metropolitan Office of Education)
Kim, Sungki (Gwangju Science Academy for the Gifted)
Choi, Hee (Bongmyeong High School)
Paik, Seoung-Hey (Department of Chemistry Education, Korea National University of Education)
Publication Information
Abstract
The purpose of this study was to identify the problems faced by students in sub-microscopic representation of acid-base reactions. Herein, we selected 30 students of 12th grade science classes, who had studied various acid-base models. In order to investigate the sub-microscopic representation ability of the students, we developed nine items related to various contexts, such as one type of solute and solvent, two types of solutes and solvent, cases with water as solvent or with nonaqueous solvents. For all items, we consistently observed lack of concept of chemical change. In context of aqueous and nonaqueous solutions, the frequency of lack of concept of chemical bonding was high if ammonia was the solute or solvent. Moreover, the frequency of lack of concept related to the degree of electrolytic dissociation was high. Therefore, chemistry teachers should understand that students' ability to sub-microscopic representation of acid-base reactions can be enhanced by analyzing the difficulties faced by the students in solving diverse acid-base problems.
Keywords
Acid-base problem solving; Sub-microscopic representation; High school students;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nakhleh, M. B. J. Chem. Educ. 1992, 69, 191.   DOI
2 Garnett, P. J.; Garnett, P. J.; Hackling, M. W. Stud. Sci. Educ. 1995, 25, 69.   DOI
3 Paik, S. H. J. Chem. Educ. 2015, 92, 1484.   DOI
4 Taber, K. S. Int. J. Sci. Educ. 2000, 22, 399.   DOI
5 Taber, K. S. Int. J. Sci. Educ. 2008, 30, 1027.   DOI
6 Talanquer, V. J. Chem. Educ. 2006, 83, 811.   DOI
7 Teo, T. W.; Goh, M. T.; Yeo, L. W. Chem. Educ. Res. Pract. 2014, 15, 470.   DOI
8 Taber, K. S.; Coll, R. K. In Chemical Education: Towards Research-Based Practice; Springer: Dordrecht, 2002; pp 213-234.
9 Watts, D. M.; Gilbert, J. K. Res. Sci. & Tech. Educ. 1983, 1, 161.   DOI
10 Tumay, H. Chem. Educ. Res. Pract. 2014, 15, 366.   DOI
11 Tumay, H. Chem. Educ. Res. Pract. 2016, 17, 229.   DOI
12 Schmidt, S. R. Mem. Cognit. 1991, 19, 523.   DOI
13 Wandersee, J. H.; Mintzes, J. J.; Novak, J. D. In Handbook of Research on Science Teaching and Learning; Gable, D. L., Ed.; Macmillan Publishing Company: NY, 1994.
14 Sanger, M. J.; Greenbowe, T. J. J. Chem. Educ. 1999, 76, 853.   DOI
15 Schmidt, H. J.; Baumgartner, T.; Eybe, H. J. Res. Sci. Teach 2003, 40, 257.   DOI
16 Demircioglu, G.; Ayas, A.; Demircioglu, H. Chem. Educ. Res. Pract. 2005, 6, 36.   DOI
17 Gilbert, J. K.; Treagust, D. F. In Multiple Representations in Chemical Education; Springer; Dordrecht, 2009; pp 1-8.
18 Johnstone, A. H. J. Comput. Assist. Learn 1991, 7, 75.   DOI
19 Johnstone, A. H. Chem. Educ. Res. Pract. 2000, 1, 9.   DOI
20 Jensen, A. R. The G Factor; Praeger: Westport, C. T., 1998.
21 Chittleborough, G.; Treagust, D. F. Chem. Educ. Res. Pract. 2007, 8, 274.   DOI
22 Talanquer, V. Int. J. Sci. Educ. 2011, 33, 179.   DOI
23 Taber, K. S. Chem. Educ. Res. Pract. 2013, 14, 156.   DOI
24 Kousathana, M.; Demerouti, M.; Tsaparlis, G. Sci. & Educ. 2005, 14, 173.   DOI
25 Romine, W. L.; Todd, A. N.; Clark, T. B. Sci. Educ. 2016, 100, 1150.   DOI
26 Furio-Mas, C.; Calatayud, M. L.; Guisasola, J.; Furio- Gomez, C. Int. J. Sci. Educ. 2005, 27, 1337.   DOI
27 Creswell, J. W.; Miller, D. L. Theory Into Practice 2000, 39, 124.   DOI
28 Harris, D. C. Quantitative Chemical Analysis, 7th ed.; W. H. Freeman & Company: 2007.
29 Oxtoby, D. W.; Gillis, H. P.; Butler, L. J. Principles of Modern Chemistry, 7th ed.; Cengage Learning: 2015.