• Title/Summary/Keyword: 기약다항식

Search Result 60, Processing Time 0.022 seconds

On the Construction of the 90/150 State Transition Matrix Corresponding to the Trinomial x2n-1 + x + 1 (3항 다항식 x2n-1 + x + 1에 대응하는 90/150 상태전이행렬의 구성)

  • Kim, Han-Doo;Cho, Sung-Jin;Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.383-390
    • /
    • 2018
  • Since cellular automata(CA) is superior to LFSR in randomness, it is applied as an alternative of LFSR in various fields. However, constructing CA corresponding to a given polynomial is more difficult than LFSR. Cattell et al. and Cho et al. showed that irreducible polynomials are CA-polynomials. And Cho et al. and Sabater et al. gave a synthesis method of 90/150 CA corresponding to the power of an irreducible polynomial, which is applicable as a shrinking generator. Swan characterizes the parity of the number of irreducible factors of a trinomial over the finite field GF(2). These polynomials are of practical importance when implementing finite field extensions. In this paper, we show that the trinomial $x^{2^n-1}+X+1$ ($n{\geq}2$) are CA-polynomials. Also the trinomial $x^{2^a(2^n-1)}+x^{2^a}+1$ ($n{\geq}2$, $a{\geq}0$) are CA-polynomials.

Efficient Bit-Parallel Polynomial Basis Multiplier for Repeated Polynomials (반복 기약다항식 기반의 효율적인 비트-병렬 다항식 기저 곱셈기)

  • Chang, Nam-Su;Kim, Chang-Han;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.3-15
    • /
    • 2009
  • Recently, Wu proposed a three small classes of finite fields $F_{2^n}$ for low-complexity bit-parallel multipliers. The proposed multipliers have low-complexities compared with those based on the irreducible pentanomials. In this paper, we propose a new Repeated Polynomial(RP) for low-complexity bit-parallel multipliers over $F_{2^n}$. Also, three classes of Irreducible Repeated polynomials are considered which are denoted, respectively, by case 1, case 2 and case3. The proposed RP bit-parallel multiplier has lower complexities than ones based on pentanomials. If we consider finite fields that have neither a ESP nor a trinomial as an irreducible polynomial when $n\leq1,000$. Then, in Wu''s result, only 11 finite fields exist for three types of irreducible polynomials when $n\leq1,000$. However, in our result, there are 181, 232, and 443 finite fields of case 1, 2 and 3, respectively.

The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP (Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계)

  • 변기영;황종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • This study focuses on the hardware implementation of fast and low-complexity multiplier over GF(2$^{m}$ ). Finite field multiplication can be realized in two steps: polynomial multiplication and modular reduction using the irreducible polynomial and we will treat both operation, separately. Polynomial multiplicative operation in this Paper is based on the Permestzi's algorithm, and irreducible polynomial is defined AOP. The realization of the proposed GF(2$^{m}$ ) multipleker-based multiplier scheme is compared to existing multiplier designs in terms of circuit complexity and operation delay time. Proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m) (유한체 GF(2m)상의 셀 배열 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.1-10
    • /
    • 2004
  • A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Efficient Finite Field Arithmetic Architectures for Pairing Based Cryptosystems (페어링 기반 암호시스템의 효율적인 유한체 연산기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Kim, Chang-Han;Han, Dong-Guk;Kim, Ho-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2008
  • The efficiency of pairing based cryptosystems depends on the computation of pairings. pairings is defined over finite fileds GF$(3^m)$ by trinomials due to efficiency. The hardware architectures for pairings have been widely studied. This paper proposes new adder and multiplier for GF(3) which are more efficient than previous results. Furthermore, this paper proposes a new unified adder-subtractor for GF$(3^m)$ based on the proposed adder and multiplier. Finally, this paper proposes new multiplier for GF$(3^m)$. The proposed MSB-first bit-serial multiplier for GF$(p^m)$ reduces the time delay by approximately 30 % and the size of register by half than previous LSB-first multipliers. The proposed multiplier can be applied to all finite fields defined by trinomials.

Efficient Bit-Parallel Multiplier for Binary Field Defind by Equally-Spaced Irreducible Polynomials (Equally Spaced 기약다항식 기반의 효율적인 이진체 비트-병렬 곱셈기)

  • Lee, Ok-Suk;Chang, Nam-Su;Kim, Chang-Han;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.3-10
    • /
    • 2008
  • The choice of basis for representation of element in $GF(2^m)$ affects the efficiency of a multiplier. Among them, a multiplier using redundant representation efficiently supports trade-off between the area complexity and the time complexity since it can quickly carry out modular reduction. So time of a previous multiplier using redundant representation is faster than time of multiplier using others basis. But, the weakness of one has a upper space complexity compared to multiplier using others basis. In this paper, we propose a new efficient multiplier with consideration that polynomial exponentiation operations are frequently used in cryptographic hardwares. The proposed multiplier is suitable fer left-to-right exponentiation environment and provides efficiency between time and area complexity. And so, it has both time delay of $T_A+({\lceil}{\log}_2m{\rceil})T_x$ and area complexity of (2m-1)(m+s). As a result, the proposed multiplier reduces $2(ms+s^2)$ compared to the previous multiplier using equally-spaced polynomials in area complexity. In addition, it reduces $T_A+({\lceil}{\log}_2m+s{\rceil})T_x$ to $T_A+({\lceil}{\log}_2m{\rceil})T_x$ in the time complexity.($T_A$:Time delay of one AND gate, $T_x$:Time delay of one XOR gate, m:Degree of equally spaced irreducible polynomial, s:spacing factor)

A New Trace Calculation Algorithm on Trinomial Irreducible Polynomial of RS code (RS-부호에 유용한 3항 기약 다항식에서 새로운 TRACE 연산 알고리즘)

  • Seo, Chang-Ho;Eun, Hui-Cheon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 1995
  • In this paper, we show that it is more efficient to use a new algorithm than to use a method of trace definition and property when we use trace calculation method on trinomial irreducible polynomial of reed-solomon code. This implementation has been done in SUN SPARC2 workstation using C-language.

  • PDF

Design of High-Speed Parallel Multiplier on Finite Fields GF(3m) (유한체 GF(3m)상의 고속 병렬 곱셈기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose a new multiplication algorithm for primitive polynomial with all 1 of coefficient in case that m is odd and even on finite fields $GF(3^m)$, and design the multiplier with parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $(m+1)^2$ same basic cells. Since the basic cells have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $T_A+T_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

[ $AB^2$ ] Multiplier based on LFSR Architecture (LFSR 구조를 이용한 $AB^2$ 곱셈기)

  • Jeon Il-Soo;Kim Hyun-Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.3
    • /
    • pp.57-63
    • /
    • 2005
  • Kim and Fenn et al. proposed two modular AB multipliers based on LFSR(Linear Feedback Shift Register) architecture. These multipliers use AOP, which has all coefficients with '1', as an irreducible polynomial. Thereby, they have good hardware complexity compared to the previous architectures. This paper proposes a modular $AB^2$ multiplier based on LFSR architecture and a modular exponentiation architecture to improve the hardware complexity of the Kim's. Our multiplier also use the AOP as an irreducible polynomial as the Kim architecture. Simulation result shows that our multiplier reduces the hardware complexity about $50\%$ in the perspective of XOR and AND gates compared to the Kim's. The architecture could be used as a basic block to implement public-key cryptosystems.

  • PDF