Browse > Article
http://dx.doi.org/10.9708/jksci.2013.18.2.009

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m)  

Seong, Hyeon-Kyeong (School of Computer Information & Communication Eng., Sangji University)
Abstract
In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.
Keywords
Finite fields; GF($2^m$); Parallel multiplier; Primitive polynomials; Cell array;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. A. Laws and C. K. Rushforth, "A Cellular Array Multiplier for $GF(2^m)$," IEEE Trans. Computers, vol. C-20, pp. 1573-1578, Dec. 1971.   DOI   ScienceOn
2 H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yaeh and I. S. Reed, "A VLSI Design of a Pipelining Reed-Solomon Decoder," IEEE Trans. Computers, vol. C-34, pp. 393-403, May 1985.   DOI   ScienceOn
3 C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, "VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$," IEEE Trans. Computers, vol. C-34, pp. 709-717, Aug. 1985.   DOI   ScienceOn
4 S. B. Wicker and V. K. Bhargava, Reed- Solomon Codes and Their Applications, IEEE Press, 1994.
5 3rd Generation Partnership Project., "Technical specification group GSM/EDGE radio access network; channel coding (release 5)," Tech. Rep. 3GPP TS 45.003 V5.6.0, June 2003.
6 C. K. Koc and B. Sunar, "Low Complexity Bit- Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998.   DOI   ScienceOn
7 C. S. Yeh, I. S. Reed, and T. K. Truong, "Systolic Multipliers for Finite Fields $GF(2^m)$," IEEE Trans. Computers, vol. 33, no. 4, pp. 357-360, Apr. 1984.   DOI   ScienceOn
8 T, Itoh and S. Tsujii, "Structure of Parallel Multipliers for a Class of Fields $GF(2^m)$," Inform. Comp., vol. 83, pp. 21-40, 1989.   DOI
9 C. L. Wang and J. L. Lin, "Systolic Array Implementation of Multipliers for Finite Fields $GF(2^m)$," IEEE Trans. Circuits and Systems, vol. 38, no. 7, July 1991.
10 C. Y. Lee, E.H. Lu, and J. Y. Lee, "Bit Parallel Systolic Multipliers for $GF(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials," IEEE Trans. Computers, vol. 50, no. 5, pp. 385-392, May 2001.   DOI   ScienceOn
11 Y. Wang, Z. Tian, X. Bi and Z. Niu, "Efficient Multiplier over Finite Field Represented in Type II Optimal Normal Basis," Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA '06), 2006.
12 N. Petra, D. de Caro and A. G.M. Strollo, "A Novel Architecture for Galois Fields $GF(2^m)$ Multipliers Based on Mastrovito Scheme," IEEE Trans. Computers, vol. 58, no. 11, pp. 1470-1483, Nov. 2007.
13 H. Wu and H. A. Hasan and L. F. Blake, "New Low-Complexity Bit-Parallel Finite Fields Multipliers Using Weekly Dual Basis," IEEE Trans. Computers, vol. 47, no. 11, pp. 1223-1234, Nov. 1998.   DOI   ScienceOn
14 E. D. Mastrovito, "VLSI Design for Multiplication on Finite Field $GF(2^m)$," Proc. International Conference on Applied Algebraic Algorithms and Error-Correcting Code, AAECC-6, Roma, pp. 297-309, July 1998.
15 A. Halbutogullari and C. K. Koc, "Mastrovito Multiplier for General Irreducible Polynomials," IEEE Trans. Computers, vol. 49, no. 5, pp. 503-518, May 2000.   DOI   ScienceOn
16 R. Lidl, H. Niederreiter and P. M. Cohn, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983.
17 S. B. Wicker and V. K. Bhargava, Error Correcting Coding Theory, McGraw-Hill, New York, 1989.
18 A. R. Masoleh and M. A. Hasan, "A New Construction of Massey-Omura Parallel Multiplier over $GF(2^m)$," IEEE Trans. Computers, vol. 51, no. 5, pp. 511-520, May 2002.   DOI   ScienceOn
19 S. Kumar, T. Wollinger and C. Paar, "Optimum Digit Serial $GF(2^m)$ Multipliers for Curve- Based Cryptography," IEEE Trans. Computers, vol. 55, no. 10, pp. 1306-1311, Oct. 2006.   DOI   ScienceOn
20 A. H. Namin, H. Wu and M. Ahmadi, "Comb Architectures for Finite Field Multiplication in $IF_{2^m}$," IEEE Trans. Computers, vol. 56, no. 7, pp. 909-916, July 2007.   DOI   ScienceOn