• Title/Summary/Keyword: 기계적 굽힘 시험

Search Result 143, Processing Time 0.026 seconds

Study for Mechanical Strength according to Thickness of Specimen in the Ceramic Injection Molding Process (세라믹 사출공정에서 시편의 두께에 따른 기계적 강성 연구)

  • Kim, Jinho;Hong, Seokmoo;Hwang, Jihoon;Lee, Jongchan;Kim, Naksoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3396-3402
    • /
    • 2014
  • The importance of shape design for strength is highly regarded when applied to thin plate products in Ceramic Injection Molding (CIM), such as cases for electronic goods. This study analyzed the characteristics of the mechanical strength of CIM product by measuring the flexural strength and elastic modulus through a 3-point bending test according to the thickness of a thin plate test piece prepared by CIM. The specimen with a thickness of 0.48mm required a 82.9~94.5N fracture load, whereas a 1.0mm thick test piece required 233.6~345.8N. The increase in thickness by 0.5mm resulted in a 3-fold increase in the fracture load, whereas the elastic modulus decreased by 20%. The thicker the specimen, the lower relative density and surface hardness of the specimen. This is because the thicker the specimen, the lower the powder fraction of the ceramic mixture, and the material properties partially change after sintering.

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

Weibull Statistical Analysis on the Mechanical Properties of SiC by Immersion in Acidic and Alkaline Solutions (산 및 알칼리 용액에 부식된 SiC의 기계적 특성에 대한 와이블 통계 해석)

  • Ahn, Seok-Hwan;Jeong, Sang-Cheol;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.767-773
    • /
    • 2016
  • A Weibull statistical analysis of the mechanical properties of SiC ceramics was carried out by immersion in acidic and alkaline solutions. The heat treatment was carried out at 1373 K. The corrosion of SiC was carried out in acidic and alkaline solutions under KSL1607. The bending strength of corroded crack-healed specimens decreased 47% and 70% compared to those of uncorroded specimens in acidic and alkaline solutions, respectively. The corrosion of SiC ceramics is faster in alkaline solution than in acid solution. The scale and shape parameters were evaluated for the as-received and corroded materials, respectively. The shape parameter of the as-received material corroded in acidic and alkaline solutions was significantly more apparent in the acidic solution. Further, the heat-treated material was large in acidic solution but small in alkaline solution. The shape parameters of the as-received and heat-treated materials were smaller in both acidic and alkaline solutions.

태양전지용 단결정 실리콘 웨이퍼의 기계적 강도 및 결함 분포

  • Sin, Bong-Geol;Hyeon, Chang-Yong;Lee, Jun-Seong;Park, Seong-Eun;Kim, Dong-Hwan;Byeon, Jae-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.450-450
    • /
    • 2009
  • 최근 전세계적으로 태양전지의 대량보급에 따라 실리콘 원료의 공급에 차질이 생겨 원자재 값이 상승하는 추세에 있다. 결정질 실리콘 태양전지의 제조비용중 실리콘 재료 및 웨이퍼가 차지하는 비율은 약 50~60%정도로 높기 때문에 실리콘 웨이퍼의 두께를 감소시키는 것이 비용절감을 위한 효과적인 방법으로 기대되고 있다. 그러나 실리콘 웨이퍼의 두께가 앓아질수록 제조공정중 균열이나 파손이 발생할 가능성이 높아지기 때문에 이에 따른 실리콘 웨이퍼의 기계적 물성에 대한 연구가 필수적이라 할 수 있다. 본 연구에서는 현재 상용으로 사용되고 있는 크기가 5 인치인 $200{\mu}m$ 두께의 실리콘웨이퍼 (As-saw)를 약 80여개의 시편으로 절단한 후 각각의 파단강도를 부위별로 측정하였다. 또한 표면절단결함을 제거하는 saw damage etching(SDE) 시간을 제어하여 두께가 $150{\mu}m$, $130{\mu}m$인 웨이퍼를 준비하였다. 이들 시험편에 대해서도 부위별 파단강도를 측정하여 as-saw상태의 시험편과 비교하였다. 파단강도 측정은 4 접 굽힘시험을 통하여 측정하였으며 파단면은 주사전자현미경을 통하여 관찰하였다. 또한 실리콘 웨이퍼의 미세균열을 비파괴적으로 검출하기 위하여 100MHz 고주파수를 이용하는 초음파현미경(SAM, scanning acoustic microscope)을 이용하여 균열의 분포를 영상화하였다.

  • PDF

Change of I-V Properties of Flexible CZTS Solar Cell Through Mechanical Bending Test (굽힘 시험에 의한 플렉시블 CZTS 태양전지의 I-V 특성 변화에 관한 연구)

  • Kim, Sungjun;Kim, Jeha
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.197-202
    • /
    • 2022
  • The CZTS solar cell is a thin film solar cell using an absorption layer composed of Cu, Zn, Sn, Se, and S, and is cheaper than a CIGS solar cell using In and Ga and more eco-friendly than a perovskite and CdTe solar cell using Pb and Cd. In this study, we conducted a bending test for flexible CZTS solar cells. Experiments were conducted in the direction of inner benidng with compressive stress and outer bending with tensile stress, and during the number of bending 1,000 times with a radius of curvature of 50 mmR, the efficiency of the solar cell decreased by up to 12.7%, and the biggest cause of efficiency reduction in both directions was a large decrease in parallel resistance.

A Discussion on Measurement of Springback Ratio Using Winding Bend Rig (감아굽힘 장치를 이용한 스프링백 비의 측정에 대한 역학적 검토)

  • 김용우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • To measure springback ratio of thin sheet or plate, winding bend rig is made. It bends a specimen with keeping its curva-ture constant and measure the bending angles before and after release of bending load. To check the performance of the bend rig, we calculated the bending moment by two ways which are based on simple beam theory. One is that the bending moment is calculated by using the results of bending test, and the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the friction between bending pin of the rig and surface of specimen, but the latter does not contain any effects of the friction since the bending moment is obtained by using tensile tests. Never-theless, the values of the two bending moments shows the same level of bending moment, which implies that the friction does not influence on the presence of friction within the scope of the test performed in this experiment. This phenomenon is explained theoretically by using moment equilibrium.

  • PDF

Performance of Sealing Integrity and Banding strain of HV Polymeric bushing with Thermal Mechanical Test (열-기계적 시험에 따른 초고압 폴리머 부싱의 굽힘변형 및 기밀성능에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung;Lee, Chul-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1441_1441
    • /
    • 2009
  • This paper describes performance of sealing integrity and bending strain of HV polymeric bushing with thermal mechanical test. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As a results, multi winding bushing shows that it has max deflection in the range of 16.5~16.9 mm.

  • PDF

Nanoindentation Experiments on MEMS Device (Nanoindenter를 이용한 MEMS 제품의 기계적 특성 측정)

  • 한준희;박준협;김광석;이상율
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.657-661
    • /
    • 2003
  • The elastic moduli or fracture strengths of multi-layered film (SiO$_2$/po1y-Si/SiN/SiO$_2$, 2.77 $\mu\textrm{m}$ thick), CVD diamond film (1.6 $\mu\textrm{m}$ thick), SiO$_2$ film (1.0 $\mu\textrm{m}$ thick) and SiN film (0.43 $\mu\textrm{m}$ thick) made for the membrane of ink-jet printer head were measured with cantilever beam bending method using nanoindenter after fabricating in the form of micro cantilever beam (${\mu}$-CLB). And the elastic moduli of ${\mu}$-CLB of SiO$_2$ film and SiN film were compared with the value of each film on silicon substrate determined with nanoindentation method. The results showed that the modulus and strength of multi-layered film decrease from 68.08 ㎬ and 2.495 ㎬ to 56.53 ㎬ and 1.834 ㎬, respectively as the width of CLB increases from 18.5 $\mu\textrm{m}$ to 58.5 $\mu\textrm{m}$. And the elastic moduli of SiO$_2$ and SiN films measured with ${\mu}$-CLB bending method are 68.16 ㎬ and 215.45 ㎬, respectively and the elastic moduli of these films on silicon substrate measured with nanoindentation method are 98.78 ㎬ and 219.38 ㎬, respectively. These results show that with ${\mu}$-CLB bending technique, moduli can be measured to within 2%.

The Effect of Abnormal Intermetallic Compounds Growth at Component on Board Level Mechanical Reliability (컴포넌트에서의 비정상적인 금속간화합물 성장이 보드 레벨 기계적 신뢰성에 미치는 영향)

  • Choi, Jae-Hoon;Ham, Hyon-Jeong;Hwang, Jae-Seon;Kim, Yong-Hyun;Lee, Dong-Chun;Moon, Jeom-Ju
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2008
  • In this paper, we studied how and why did abnormal IMC growth at component affect on board level mechanical reliability. First, interfacial reactions between Sn2.5Ag0.5Cu solder and electrolytic Ni/Au UBM of component side were investigated with reflow times and thermal aging time. Also, to compare mechanical reliability of component level, shear energy was evaluated using the ball shear test conducted with variation of shear tip speed. Finally, to evaluate mechanical reliability of board level, we surface-mounted component fabricated with each condition on PCB side. After conducting of 3 point bending test and impact test, we confirmed solder joint crack mode using cross-sectioning and dye & pry penetration method.

  • PDF

Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars (SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성)

  • Kong, Yu Sik;Park, Young Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).