DOI QR코드

DOI QR Code

Change of I-V Properties of Flexible CZTS Solar Cell Through Mechanical Bending Test

굽힘 시험에 의한 플렉시블 CZTS 태양전지의 I-V 특성 변화에 관한 연구

  • Kim, Sungjun (Department of Electronic Engineering, Cheongju University) ;
  • Kim, Jeha (Department of Energy Convergence, Cheongju University)
  • 김성준 (청주대학교 전자공학과) ;
  • 김제하 (청주대학교 에너지융합학과)
  • Received : 2022.01.25
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

The CZTS solar cell is a thin film solar cell using an absorption layer composed of Cu, Zn, Sn, Se, and S, and is cheaper than a CIGS solar cell using In and Ga and more eco-friendly than a perovskite and CdTe solar cell using Pb and Cd. In this study, we conducted a bending test for flexible CZTS solar cells. Experiments were conducted in the direction of inner benidng with compressive stress and outer bending with tensile stress, and during the number of bending 1,000 times with a radius of curvature of 50 mmR, the efficiency of the solar cell decreased by up to 12.7%, and the biggest cause of efficiency reduction in both directions was a large decrease in parallel resistance.

CZTS 태양전지는 Cu, Zn, Sn, Se, S으로 구성된 흡수층을 사용하는 박막 태양전지로, In, Ga이 사용되는 CIGS 태양전지보다 저렴하며 Pb, Cd이 사용된 페로브스카이트, CdTe 태양전지보다 친환경적이다. 본 연구에서 우리는 유연기판인 Mo foil 위에 제작된 유연 CZTS 태양전지를 지정된 곡률만큼 휘게 하는 bending test를 진행하였다. 태양전지에 압축응력이 가해지는 inner benidng과 인장응력이 가해지는 outer bending의 방향에서 실험은 진행되었으며, 50 mmR의 곡률 반경으로 진행된 1,000 회의 굽힘 횟수 동안 태양전지의 효율은 최고 12.7%까지 감소하였으며, 두 방향 모두에서 효율 감소의 가장 큰 원인은 병렬저항의 큰 감소로 나타났다.

Keywords

Acknowledgement

This research was partially supported by the Cheongju University Research Scholarship Grants in 2021.

References

  1. J. H. Park, W. S. Nam & J. S. Jang. (2020). Urban Design cases study analysis using solar cell : Focusing on the use CIGS Thin Film Solar cell Journal of the Korea Convergence Society, 11(3), 163-170. DOI : 10.15207/JKCS.2020.11.3.163
  2. H. Baek & T. Kim. (2021). Analysis of the Effect on Domestic PV Capacity under the REC Revision and Mandatory Supply. Journal of the Korea Convergence Society, 12(6), 139-150. DOI : 10.15207/JKCS.2021.12.6.139
  3. K. J. Yang et al. (2019). Flexible Cu2ZnSn(S,Se)4 solar cells with over 10% efficiency and methods of enlarging the cell area. Nat Commun 10, 2959. DOI : 10.1038/s41467-019-10890-x
  4. K. Dalapati et al. (2017), Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells. Sci. Rep., 7, 1350. DOI : 10.1038/s41598-017-01605-7
  5. C. Wadia, A. P. Alivisatos & D. M. Kammen (2009). Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072-2077. DOI : 10.1021/es8019534
  6. R. N. Gayen & T. Chakrabarti. (2019). Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration. Materials Science in Semiconductor Processing, 100, 1-7. DOI : 10.1016/j.mssp.2019.04.018
  7. M. I. Khalilet et al. (2021). CZTS thin film solar cells on flexible Molybdenum foil by electrode position-annealing route. Journal of Applied Electrochemistry volume 51, 209-218.DOI : 10.1007/s10800-020-01494-1
  8. S. Lopez-Marino, et al. (2016) Alkali doping strategies for flexible and light-weight Cu 2 ZnSnSe 4 solar cells. J Mater Chem A, 4(5), 1895-1907. DOI : 10.1039/C5TA09640E
  9. S. J. Kim & J. Kim. (2020). Changes of Photovoltaic Properties of Flexible CIGS Solar Cell Under Mechanical Bending Stress. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 33(3), 163-168. DOI : 10.4313/JKEM.2020.33.3.163
  10. B. M. Chan et al. (2019) Impact of Buffer Layer Process and Na on Shunt Paths of Monolithic Series-connected CIGSSe Thin Film Solar Cells. Sci Rep 9, 3666. DOI : 10.1038/s41598-019-38945-5
  11. K. Bouzidi, M. Chegaar & A. Bouhemadou. (2007). Solar cells parameters evaluation considering the series and shunt resistance. Solar Energy Materials and Solar Cells, 91(18), 1647-1651. DOI : 10.1002/pip.3102
  12. P. Singh & N. M. Ravindra. (2012). Analysis of series and shunt resistance in silicon solar cells using single and double exponential models. Emerging Materials Research, 1(1), 33-38. DOI : 10.1680/emr.11.00008
  13. A. D. Dhass, E. Natarajan & L. Ponnusamy. (2012). Influence of shunt resistance on the performance of solar photovoltaic cell. 2012 ICETEEEM, 382-386. DOI : 10.1109/ICETEEEM.2012.6494522
  14. E. L. Meyer & E. E Van Dyk. (2005). The effect of reduced shunt resistance and shading on photovoltaic module performance. IEEE Conference, 2005, 1331-1334. DOI : 10.1109/PVSC.2005.1488387
  15. Y. Li et al. (2017). Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 7, 46141. DOI : 10.1038/srep46141