• Title/Summary/Keyword: 금속기지복합재료

Search Result 97, Processing Time 0.023 seconds

Research Trends in Thermally Conductive Composites Filled with Carbon Materials (탄소재료가 내첨된 열전도성 복합재의 연구 동향)

  • An, Donghae;Kim, Kyung Hoon;Kim, Ji-Wook;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.73-83
    • /
    • 2020
  • As electronic devices become more advanced and smaller, one of the biggest problems to solve is the heat affecting the efficiency and lifetime of instruments. High thermal conductivity materials, in particular, metal or ceramic ones, have been used to reduce the heat generated from devices. However, due to their low mechanical properties and high weight, thermally conductive composites composed with polymers having a light-weight and good mechanical properties as a matrix and carbon materials having high thermal conductivity as a thermally conductive filler have been attracting great attention. To improve the thermal conductivity of the composites, a phonon scattering must be suppressed to move phonon effectively. In this review, we classified researches related to phonon migration and scattering inhibition of carbon/polymer composites, and discussed various methods to improve thermal conductivity.

Finite Element Analysis of Deformation Behavior During ECAP for an Aluminum Alloy Composite Model containing a SiC Particle and Porosities (강화상과 기공이 포함된 금속기지 복합재 모델의 ECAP 거동에 대한 유한요소해석)

  • Lee, Sung-Chul;Han, Sang-Yul;Kim, Ki-Tae;Hwang, Sang-Moo;Huh, Lyun-Min;Chung, Hyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.739-746
    • /
    • 2004
  • The plastic deformation behavior of an aluminum alloy containing a particle and porosities was investigated at room temperature during equal channel angular pressing (ECAP). Finite element analysis by using ABAQUS shows that ECAP is a useful tool for eliminating residual porosity in the specimen, and more effective under friction condition. The simulation, however, shows considerably low density distributions for matrix near a particle at which many defects may occur during severe deformation. Finite element results of effective strains and deformed shapes for matrix with a particle were compared with theoretical calculations under simple shear stress. Also, based on the distribution of the maximum principal stress in the specimen, Weibull fracture probability was obtained for particle sizes and particle-coating layer materials. The probability was useful to predict the trend of more susceptible failure of a brittle coating layer than a particle without an interphase in metal matrix composites.

Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation (몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측)

  • Ahn, Jeong-Ju;Kwon, Jae-Do;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.

Cavitation-Erosion Characteristics between Polymer Based Composites and Metals under the Various Condition of Fluid Systems (유체 환경하에서의 고분자 기지 복합재료와 금속재의 캐비테이션 침식 특성)

  • Kim, Yun-Hae;Son, Young-Jun;Eum, Soo-Hyun;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.363-371
    • /
    • 2003
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator(suggested by ASTM G 32, 20KHz, 50$mu extrm{m}$). The maximum erosion rate by cavitation erosion in both of distilled water and sea water appeared to be proportioned to their hardness and tensile strength. Cavitation weight loss and rate of cast iron in sea water condition were greater(approximately 3 times) than that in distilled water condition, however in case of stainless steel and brass the cavitation weight loss of composite materials were not so different in both of their conditions. Cavitation weight loss of composite materials were shown as below on this test, Duratough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's distilled water condition. The main tendency of cavitation erosion for metals appeared that small damaged holes causing by cavitation erosion was observed with radial pattern. On the other hand, the tendency for composites appeared that small damaged holes were observed randomly.

Fabrication of AC4A/$SiC_w$composite by squeeze casting(II) (용탕단조법에 의한 AC4A/$SiC_w$복합재교 제조에 관한 연구(ll)-가압력 및 시효특성-)

  • Mun, Gyeong-Cheol;Lee, Chun-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.606-613
    • /
    • 1993
  • This was studied about aging characteristic of AC4A/$SiC_{w}$ 10-30v/o reinforced composite. Aging hardenability was decreased $SiC_{w}$ 30% > 10% > 20%. Aging hardening of T6 treatmented composite was higher absolute value than AC4A I/M material. And this results indicated initial hardening phenomenon according to increase $SiC_{w}$ volume fraction. Reinforced effect by pressure was the same effect as before aging treatment and the best condition pressure at 75MPa. Similar to reinforced effect according to $SiC_{w}$ volume fraction was 30 % > 10 % > 20 %. In case of pressure is low, whisker is not break the same time press with base metal after wetting. After it is wetting with base metal, a part transformed or wetting part break and whisker maintain original shape or a part transformed on the otherhand, in case of pressure is high, whisker is break in same time it was not against pressure and whisker's shape is near a polygon or spherical shape.

  • PDF

Modeling the Heterogeneous Microstructures of Ti-MMCs in Consolidation Process (강화공정에 따른 비균질 티타늄 금속기 복합재료 모델링)

  • Lee Soo-Yeun;Kim Tae-Won
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.21-30
    • /
    • 2005
  • Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil method. Heterogeneous microstructures prior to and following consolidation have been quantified, and the relations to densification behavior investigated. As shown by the results, dramatic variations of the microstructures including equiaxed $\alpha$, transformed $\beta$ and $ Widmanst\ddot{a}tten$ $\alpha$ are obtained during the process according to the fiber distributions. The dependence of microstructures on the consolidation then has been explained in terms of the change in mechanisms such as grain growth and recrystallization that occur with changing levels of inhomogeneity of deformation. Further, micro-mechanics based constitutive model enabling the evolution of density over time together with the evolutions of microstructure to be predicted has been developed. The mode developed is then implemented into finite element scheme so that practical process simulation has been carried out.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition (분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동)

  • Chung, Kang;Kim, Doo-Hwan;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

Abrasion Wear Behavior of Recycled Tungsten Carbide Reinforced Metal Matrix Composite (재생 초경합금 분말을 활용한 금속기지 복합재료의 Abrasion 마모거동)

  • Kang, Nam-Hyun;Chae, Hyun-Byung;Kim, Jun-Ki;Choi, Jong-Ha;Kim, Jeong-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.850-854
    • /
    • 2003
  • The abrasion wear behavior on the hardfacing weld was investigated by performing abrasion wear, hardness, and microstructural tests. The gas metal arc(GMA) weld was produced by using the cored wire which was filled with the hard metal, i.e., the recycled tungsten carbide (WC) reinforced metal matrix composite. For 30% addition of the hard metal, the abrasion wear resistance was significantly improved comparing with that for 20% addition of the hard metal. Above 30% addition of the hard metal, however, there was no significant improvement of the wear resistance. The improvement of the wear resistance was due to the increased amount of eutectic carbides(W$_{6}$C) which was formed during GMA welding. For the weld in which the hard metal was added to 30-40%, an optimum level of abrasion wear resistance was performed.

A Study on Development of High Strength and Wear Resistance Intermetallic Compounds/Al Matrix Composites (고강도 내마모 금속간화합물/Al기지 복합재료의 개발을 위한 기초연구)

  • Choi, Dap-Chun;Lee, Kyung-Ku;Lee, Ho-Jong;Ghi, Whe-Bong
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.276-284
    • /
    • 1993
  • The interfacial phenomena between intermetallic compounds and Al matrix have been studied at $680^{\circ}C$ for various holding time under argon atmosphere. Model experiments were performed using Fe, Ni and Ti wire to observe the interfacial phenomena. The interfacial phenomena between intermetallic compounds and Al matrix were analysed by optical microscope, SEM and EDX. The results of EDX and XRD showed that the interfacial zones of intermetallic compounds/Al matrix were composed of several intermetallic layers. The reaction layer was varied with holding time and heating temperature. The investigation of interfacial zones in the specimen as a function of heat treatment time at $680^{\circ}C$ indicated that the best heat treatment condition for squeeze casting was $680^{\circ}C$ for 5min.

  • PDF