DOI QR코드

DOI QR Code

Finite Element Analysis of Deformation Behavior During ECAP for an Aluminum Alloy Composite Model containing a SiC Particle and Porosities

강화상과 기공이 포함된 금속기지 복합재 모델의 ECAP 거동에 대한 유한요소해석

  • 이성철 (포항공과대학교 대학원) ;
  • 하상렬 (포항공과대학교 대학) ;
  • 김기태 (포항공과대학교 기계공학과) ;
  • 황상무 (포항공과대학교 기계공학) ;
  • 허륜민 (아주대학교 대학원 분자과학기술학) ;
  • 정형식 (아주대학교 분자과학기술학)
  • Published : 2004.06.01

Abstract

The plastic deformation behavior of an aluminum alloy containing a particle and porosities was investigated at room temperature during equal channel angular pressing (ECAP). Finite element analysis by using ABAQUS shows that ECAP is a useful tool for eliminating residual porosity in the specimen, and more effective under friction condition. The simulation, however, shows considerably low density distributions for matrix near a particle at which many defects may occur during severe deformation. Finite element results of effective strains and deformed shapes for matrix with a particle were compared with theoretical calculations under simple shear stress. Also, based on the distribution of the maximum principal stress in the specimen, Weibull fracture probability was obtained for particle sizes and particle-coating layer materials. The probability was useful to predict the trend of more susceptible failure of a brittle coating layer than a particle without an interphase in metal matrix composites.

Keywords

References

  1. Shan, A., Moon, I. G., Ko, H. S. and Park, J. W., 1999, 'Direct Observation of Shear Deformation During Equal Channel Angular Pressing of Pure Aluminum,' Scripta Mater., Vol. 41, No. 4, pp. 353-357 https://doi.org/10.1016/S1359-6462(99)00188-8
  2. Saito, Y., Utsunomiya, H., Suzuki, H. and Sakai, T., 2000, 'Improvement in the ${\gamma}-value$ of Aluminum Strip by a Continuous Shear Deformation Process,' Scripta Mater., Vol. 42, pp. 1139-1144 https://doi.org/10.1016/S1359-6462(00)00349-3
  3. Horita, Z., Fujinami, T. and Langdon, T. G., 2001, 'The Potential for Scaling ECAP: Effect of Sample Size on Grain Refinement and Mechanical Properties,' Mater. Sci. Eng., Vol. A318, pp. 34-41 https://doi.org/10.1016/S0921-5093(01)01339-9
  4. Furukawa, W., Horita, Z., Nemoto, M., Valiev, R. Z. and Langdon, T. G., 1996, 'Microhardness Measurements and the Hall-Petch Relationship in an AI-Mg Alloy with Submicrometer Grain Size,' Acta Mater., Vol. 44, No. 11, pp. 4619-4629 https://doi.org/10.1016/1359-6454(96)00105-X
  5. Segal, V. M., 1995, 'Materials Processing by Simple Shear,' Mater. Sci. Eng., Vol. A197, pp. 157-164
  6. Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M. and Langdon, T. G., 1996, 'Principle of Equal-Channel Angular Pressing for the Processing of Ultra-fine Grained Materials,' Scripta Metall., Vol. 35, No. 2, pp. 143-146 https://doi.org/10.1016/1359-6462(96)00107-8
  7. Srinivasan, R., 2001, 'Computer Simulation of the Equichannel Angular Extrusion(ECAE) Process.' Scripta Mater., Vol. 44, pp. 91-96 https://doi.org/10.1016/S1359-6462(00)00546-7
  8. Prangnell, P. B., Harris, C. and Roberts, S. M., 1997, 'Finite Element Modelling of Equal Channel Angular Extrusion,' Scripta Mater., Vol. 37, No. 7, pp. 983-989 https://doi.org/10.1016/S1359-6462(97)00192-9
  9. Kim, H. S., Seo, M. H. and Hong, S. I., 2000, 'On the Die Corner Gap Formation in Equal Channel Angular Pressing,' Mater. Sci. Eng., Vol. A291, pp. 86-90 https://doi.org/10.1016/S0921-5093(00)00970-9
  10. Seimiatin, S. L., Delo, D. P. and Shell, E. B., 2000, 'The Effect of Material Properties Tooling Design on Deformation and Fracture during Equal Channel Angular Extrusion,' Acta Mater., Vol. 48, pp. 1841-1851 https://doi.org/10.1016/S1359-6454(00)00019-7
  11. Li, Y. and Langdon, T. G., 2000, 'Equal-channel Angular Pressing of an Al-6061 Metal Matrix Composite,' J. Mater. Sci., Vol. 35, pp. 1201-1204 https://doi.org/10.1023/A:1004740504619
  12. Valiev, R. Z., Islamgaliev, R. K. and Kuzmina, N. F., Li, Y. and Langdon, T. G., 1999, 'Strengthening and Grain Refinement in an Al-6061 Metal Matrix Composite through Intense Plastic Straining,' Scripta Mater., Vol. 40, No. 1, pp. 117-122 https://doi.org/10.1016/S1359-6462(98)00398-4
  13. Chang, S. Y., Lee, K. S., Choi, S. H. and Shin, D. H., 2003, 'Effect of ECAP on Microstructure and Mechanical Properties of a Commercial 6061 Al Alloy Produced by Powder Metallurgy,' J. Alloys Compd., Vol. 354, pp. 216-220 https://doi.org/10.1016/S0925-8388(03)00008-2
  14. Chang, S. Y., Lee, K. S., Ryu, S. K., Park, K. T. and Shin, D. H., 2002, 'Effect of Equal Channel Angular Pressing on the Distribution of Reinforcements in the Discontinuous Metal Matrix Composites,' Mater. Trans., Vol. 43, No. 4, pp. 757-761 https://doi.org/10.2320/matertrans.43.757
  15. Gurson, A. L., 1977, 'Continuum Theory of Ductile Rupture by Void Nucleation and Growth-Part 1. Yield Criteria and Flow Rules for Porous Ductile Media,' J. Eng. Mat. Tech., Vol. 99, pp. 2-15 https://doi.org/10.1115/1.3443401
  16. Tvergaard, V., 1982, 'On Localization in Ductile Materials Containing Spherical Voids,' Int. J. Fracture, Vol. 18, pp. 237-252 https://doi.org/10.1007/BF00015686
  17. ABAQUS User's I and II Manual, Hibbit, Karlsson, and Sorensen, 1998
  18. Kim, H. S., 2001, 'Finite Element Analysis of Equal Channel Angular Pressing Using a Roung Corner Die,' Mater. Sci. Eng., Vol. A315, pp. 122-128
  19. Lee, S. C. and Kim, K. T., 2002, 'Densification Behavior of Aluminum Alloy Powder under Cold Compaction,' Int. J. Mech. Sci., Vol. 44, pp. 1295-1308 https://doi.org/10.1016/S0020-7403(02)00054-1
  20. Kim, K. T. and Cho, J. H., 2001, 'A Densification Model for Mixed Metal Powder under Cold Compaction,' Int. J. Mech. Sci., Vol. 43, pp. 2929-2946 https://doi.org/10.1016/S0020-7403(01)00062-5
  21. Rice, R. W., 1990, 'Toughening in Ceramic Particulate and Whisker Composite,' Ceram. Eng. Sci. Proc. Vol. 2, No. 7-8, p. 667-694
  22. Heoowege, K. H. and Madelung, O., 1984, Landolt-Bornstein, Springer-Verlag Berlin
  23. Lauke, B. Schuller, T. and Beckert, W., 2000, 'Calculation of Adhesion Strength at the Interface of a Coated Particle Embedded within Matrix under Mutliaxial Load,' Comput. Mater. Sci., Vol. 18, pp. 362-380 https://doi.org/10.1016/S0927-0256(00)00119-1
  24. Clyne, T. W., 2000, 'Comprehensive Composite Materials,' Elsevier Press, Vol. 3, pp. 95-96