Browse > Article
http://dx.doi.org/10.14478/ace.2019.1097

Research Trends in Thermally Conductive Composites Filled with Carbon Materials  

An, Donghae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Ji-Wook (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.1, 2020 , pp. 73-83 More about this Journal
Abstract
As electronic devices become more advanced and smaller, one of the biggest problems to solve is the heat affecting the efficiency and lifetime of instruments. High thermal conductivity materials, in particular, metal or ceramic ones, have been used to reduce the heat generated from devices. However, due to their low mechanical properties and high weight, thermally conductive composites composed with polymers having a light-weight and good mechanical properties as a matrix and carbon materials having high thermal conductivity as a thermally conductive filler have been attracting great attention. To improve the thermal conductivity of the composites, a phonon scattering must be suppressed to move phonon effectively. In this review, we classified researches related to phonon migration and scattering inhibition of carbon/polymer composites, and discussed various methods to improve thermal conductivity.
Keywords
Thermally conductive composites; Thermal conductivity; Carbon materials; Phonon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-Y. Yang, C.-C.M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, and K.-C. Chiou, Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, 48, 592-603 (2010).   DOI
2 A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Compos. Sci. Technol., 66, 1285-1288 (2006).   DOI
3 W. Yu, L. Wang, Y. Qi, L. Chen, L. Wang, and H. Xie, The influence of nitrogen doping on thermal conductivity of carbon nanotubes, Thermochim. Acta, 617, 163-168 (2015).   DOI
4 J. S. Im, J. G. Kim, S.-H. Lee, and Y.-S. Lee, Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference, Colloids Surf. A, 364, 151-157 (2010).   DOI
5 K. Ji, H. Zhao, J. Zhang, J. Chen, and Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs, Appl. Surf. Sci., 311, 351-356 (2014).   DOI
6 H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Prog. Polym. Sci., 39, 627-655 (2014).   DOI
7 H. J. Kim, H. Kim, Y. Kim, W. S. Lee, D. H. Yoon, and W. S. Yang, The study of thermal properties of graphene/Cu foam hybrid structures, J. Korean Cryst. Growth Cryst. Technol., 23, 235-240 (2013).   DOI
8 J. Liang, M. C. Saha, and M. C. Altan, Effect of carbon nanofibers on thermal conductivity of carbon fiber reinforced composites, Procedia Eng., 56, 814-820 (2013).   DOI
9 Y. A. Kim, S. Kamio, T. Tajiri, T. Hayashi, S. M. Song, M. Endo, M. Terrones, and M. S. Dresselhaus, Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes, Appl. Phys. Lett., 90, 093125 (2007).   DOI
10 S. T. Viana, V. K. Scariot, A. Provensi, G. M. O. Barra, and J. R. Barbosa, Fabrication and thermal analysis of epoxy resin-carbon fiber fabric composite plate-coil heat exchangers, Appl. Therm. Eng., 127, 1451-1460 (2017).   DOI
11 X. Shen, Z. Wang, Y. Wu, X. Liu, and J.-K. Kim, Effect of functionalization on thermal conductivities of graphene/epoxy composites, Carbon, 108, 412-422 (2016).   DOI
12 T. Nomura, K. Tabuchi, C. Zhu, N. Sheng, S. Wang, and T. Akiyama, High thermal conductivity phase change composite with percolating carbon fiber network, Appl. Energy, 154, 678-685 (2015).   DOI
13 L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, and Z. Guo, Electromagnetic interference shielding MWCNT-$Fe3O_4$@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability, Carbon, 141, 506-514 (2019).   DOI
14 W. Yuan, Q. Xiao, L. Li, and T. Xu, Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles, Appl. Therm. Eng., 106, 1067-1074 (2016).   DOI
15 H. Wang, S. Wang, W. Lu, M. Li, Y. Gu, Y. Zhang, and Z. Zhang, Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification, Appl. Surf. Sci., 442, 170-177 (2018).   DOI
16 C. Ji, C. Yan, Y. Wang, S. Xiong, F. Zhou, Y. Li, R. Sun, and C.-P. Wong, Thermal conductivity enhancement of CNT/$MoS_2$/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network, Compos. B. Eng., 163, 363-370 (2019).   DOI
17 Y. Li, X. Tian, W. Yang, Q. Li, L. Hou, Z. Zhu, Y. Tang, M. Wang, B. Zhang, T. Pan, and Y. Li, Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength, Chem. Eng. J., 358, 718-724 (2019).   DOI
18 B. Tang, G. Hu, H. Gao, and L. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials, Int. J. Heat Mass Transfer, 85, 420-429 (2015).   DOI
19 H. Im and J. Kim, Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite, Carbon, 50, 5429-5440 (2012).   DOI
20 Y.-X. Fu, Z.-X. He, D.-C. Mo, and S.-S. Lu, Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives, Int. J. Therm. Sci., 86, 276-283 (2014).   DOI
21 S.-S. Park, S.-P. Han, Y.-H. Jeon, J.-Y. Kim, and N.-J. Kim, A comparative study on the characteristics of nanofluids to the shape of graphene and carbon nanotube, J. Korean Solar Energy Soc., 33, 99-106 (2013).   DOI
22 L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, and Y.-P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity, Adv. Mater., 21, 2088-2092 (2009).   DOI
23 N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology, 22, 105705 (2011).   DOI
24 M. Shamsa, W. L. Liu, A. A. Balandin, C. Casiraghi, W. I. Milne, and A. C. Ferrari, Thermal conductivity of diamond-like carbon films, Appl. Phys. Lett., 89, 161921 (2006).   DOI
25 H. Li, S. Dai, J. Miao, X. Wu, N. Chandrasekharan, H. Qiu, and J. Yang, Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy, Carbon, 126, 319-327 (2018).   DOI
26 J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, High-thermal-conductivity, mesophase-pitch-derived carbon foams: Effect of precursor on structure and properties, Carbon, 38, 953-973 (2000).   DOI
27 N. Joseph, C. Janardhanan, and M. T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites, Compos. Sci. Tech., 101, 139-144 (2014).   DOI
28 G.-H. Kang, K. Seong, M. Kim, I. G. Kim, I. C. Bang, H. W. Park, and Y.-B. Park, Thermoelectric composites based on carbon nanotubes and micro glass bubbles, Compos. Res., 28, 70-74 (2015).   DOI
29 J. H. Lin, Z. I. Lin, Y. J. Pan, C. K. Chen, C. L. Huang, C. H. Huang, and C. W. Lou, Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: Synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes, Macromol. Mater. Eng., 301, 199-211 (2016).   DOI
30 J. Kim, H. Im, and J. Kim, The effect of surface modification on the disperisibilities and the thermal conductivities of single-walled carbon nanotube (SWCNT)/epoxy composites, Appl. Chem. Eng., 22, 266-271 (2011).
31 D. Xing, L. Lu, W. Tang, Y. Xie, and Y. Tang, An ultra-thin multilayer carbon fiber reinforced composite for absorption-dominated EMI shielding application, Mater. Lett., 207, 165-168 (2017).   DOI
32 J. Liu, W. Qu, Y. Xie, B. Zhu, T. Wang, X. Bai, and X. Wang, Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers, Carbon, 121, 35-47 (2017).   DOI
33 Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding, Adv. Mater., 25, 1296-1300 (2013).   DOI
34 S. Kuester, G. M. Barra, J. C. Ferreira Jr, B. G. Soares, and N. R. Demarquette, Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) and carbon nanotubes, Eur. Polym. J., 77, 43-53 (2016).   DOI
35 J. Fukai, M. Kanou, Y. Kodama, and O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Convers. Manage., 41, 1543-1556 (2000).   DOI
36 J.-H. Kim and Y.-S. Lee, The effects of carbon coating onto graphite filler on the structure and properties of carbon foams, Carbon Lett., 21, 111-115 (2017).   DOI
37 B. Zalba, J. M. Marin, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Therm. Eng., 23, 251-283 (2003).   DOI
38 A. T. Miranda, L. Bolzoni, N. Barekar, Y. Huang, J. Shin, S.-H. Ko, and B. J. McKay, Processing, structure and thermal conductivity correlation in carbon fibre reinforced aluminium metal matrix composites, Mater. Des., 156, 329-339 (2018).   DOI
39 D. H. Sung, M. Kim, and Y.-B. Park, Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites, Compos. B. Eng., 133, 232-239 (2018).   DOI
40 C.-W. Nan, G. Liu, Y. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 3549-3551 (2004).   DOI
41 T. S. Gspann, S. M. Juckes, J. F. Niven, M. B. Johnson, J. A. Elliott, M. A. White, and A. H. Windle, High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology, Carbon, 114, 160-168 (2017).   DOI
42 D. Hu, W. Gong, J. Di, D. Li, R. Li, W. Lu, B. Gu, B. Sun, and Q. Li, Strong graphene-interlayered carbon nanotube films with high thermal conductivity, Carbon, 118, 659-665 (2017).   DOI
43 S. Zhang, L. Gao, J. Han, Z. Li, G. Zu, X. Ran, and Y. Sun, Through-thickness thermal conductivity enhancement and tensile response of carbon fiber-reinforced polymer composites, Compos. B. Eng., 165, 183-192 (2019).   DOI
44 L. Qiu, H. Zou, N. Zhu, Y. Feng, X. Zhang, and X. Zhang, Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers, Appl. Therm. Eng., 141, 913-920 (2018).   DOI
45 M. Sajid, I. Hassan, and A. Rahman, An overview of cooling of thermoelectric devices, Renew. Sust. Energ. Rev., 78, 15-22 (2017).   DOI
46 K. M. Lee, M.-J. Kim, H. Jo, S. Y. Yeo, and Y.-S. Lee, The electrical and heating properties of copper-incorporated graphite fibers fabricated using different ultrasonication techniques, Carbon Lett., 24, 111-114 (2017).   DOI
47 M.-S. Park, S. Lee, and Y.-S. Lee, Mechanical properties of epoxy composites reinforced with ammonia-treated graphene oxides, Carbon Lett., 21, 1-7 (2017).   DOI
48 A. Aliyu, A. Abdulkareem, A. Kovo, O. Abubakre, J. Tijani, and I. Kariim, Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin, Carbon Lett., 21, 33-50 (2017).   DOI
49 W.-K. Choi, B.-J. Kim, and S.-J. Park, Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers, Carbon Lett., 14, 243-246 (2013).   DOI
50 A. E. Fetohi, R. A. Hameed, and K. El-Khatib, Development of electroless Ni-P modified aluminum substrates in a simulated fuel cell environment, J. Ind. Eng. Chem., 30, 239-248 (2015).   DOI
51 F. Tian, H. Li, N. Zhao, and C. He, Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition, Mater. Chem. Phys., 115, 493-495 (2009).   DOI
52 G.-M. Yoo, S.-G. Lee, and S.-R. Kim, Effect of multi-wall carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based composites, Adhesion and Interface, 11, 174-180 (2010).
53 Y.-P. Sun, K. Fu, Y. Lin, and W. Huang, Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res., 35, 1096-1104 (2002).   DOI
54 M. H. Tsai, I. H. Tseng, J. C. Chiang, and J. J. Li, Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability, ACS Appl. Mater. Interfaces, 6, 8639-8645 (2014).   DOI
55 B. Fan, Y. Liu, D. He, and J. Bai, Enhanced thermal conductivity for mesophase pitch-based carbon fiber/modified boron nitride/epoxy composites, Polymer, 122, 71-76 (2017).   DOI
56 S. Ganguli, A. K. Roy, and D. P. Anderson, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites, Carbon, 46, 806-817 (2008).   DOI
57 Z. Wang, R. Qi, J. Wang, and S. Qi, Thermal conductivity improvement of epoxy composite filled with expanded graphite, Ceram. Int., 41, 13541-13546 (2015).   DOI
58 S. Y. Mun, H. M. Lim, and D.-J. Lee, Thermal conductivity of a silicon carbide/pitch-based carbon fiber-epoxy composite, Thermochim. Acta, 619, 16-19 (2015).   DOI
59 W. Fan, J.-l. Li, Y.-y. Zheng, T.-j. Liu, X. Tian, and R.-j. Sun, Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites, Polym. Degrad. Stab., 123, 162-169 (2016).   DOI