Browse > Article

Modeling the Heterogeneous Microstructures of Ti-MMCs in Consolidation Process  

Lee Soo-Yeun (한양대학교 기계설계학과 대학원)
Kim Tae-Won (한양대학교 기계공학부)
Publication Information
Composites Research / v.18, no.3, 2005 , pp. 21-30 More about this Journal
Abstract
Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil method. Heterogeneous microstructures prior to and following consolidation have been quantified, and the relations to densification behavior investigated. As shown by the results, dramatic variations of the microstructures including equiaxed $\alpha$, transformed $\beta$ and $ Widmanst\ddot{a}tten$ $\alpha$ are obtained during the process according to the fiber distributions. The dependence of microstructures on the consolidation then has been explained in terms of the change in mechanisms such as grain growth and recrystallization that occur with changing levels of inhomogeneity of deformation. Further, micro-mechanics based constitutive model enabling the evolution of density over time together with the evolutions of microstructure to be predicted has been developed. The mode developed is then implemented into finite element scheme so that practical process simulation has been carried out.
Keywords
consolidation process; microstructure; grain growth; recrystallization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Derby, B., 'The dependence of grain size on stress during dynamic recrystallisation,' Acta Metall. Mater., Vol. 39, 1991, pp. 955-962   DOI   ScienceOn
2 Paton, N. E. and Hamilton, C. H., 'Microstructural influence on superplasticity in Ti-6Al-4V,' Met. Trans., Vol. 10A, 1979, pp. 241-250
3 Kurzydlowski, J. K. and Ralph, B., The Quantitative Description of the Microstructure of Materials, CRC Press, New York, 1995
4 Ding, R., Guo, Z. X. and Wilson, A., 'Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing,' Materials Science and Engineering, Vol. A327, 2002, pp. 233-245
5 Porter, D. A. and Easterling, K. E., Phase transformatin in metals, 2nd ed., Champman & Hall, London, 1992
6 Hamilton, C. H., 'Superplastic in titanium alloys,' Proc. Symp. on Superplastic Forming, LA, CA, USA, 1984, pp. 13-49
7 Nieh, T. G., Wadsworth, J., and Sherby, O. D., Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, 1997
8 김태원, '항공기용 합금에서 초소성거동 해석을 위한 구성방정식 개발,' 한국항공우주학회지, 제 29권, 제 6호, 2001, pp. 24-33
9 Lemaitre, L. and Chaboche, J-L., Mechanics of solid materials, Cambridge Univ. Press, Cambridge, 1990
10 Partridge, P. G. and Ward-Close, C. M., 'Processing of advanced continuous fibre composites: Current practice and potential developments,' Int. Mater. Reviews, Vol. 38, No. 1, 1993, pp. 1-23
11 Tvergaard, V., 'Influence of voids on shear band instabilities under plane strain conditions,' Int. J. of Fracture, Vol. 17, No.4, 1981, pp. 389-407   DOI   ScienceOn
12 Sellars, C. M., 'Modelling microstructural development during hot rolling,' Materials science and technology, Vol. 6, 1990, pp. 1072-1081   DOI
13 Mall, S., Fecke, T. and Foringer, M. A., Titanium Matrix Composites: Mechanical Behavior(Ed.. Mall, S. and Nicholas, T.), Technomic publishing, 1998, pp. 1-22
14 Guo, Z. X., 'Towards cost effective manufacturing of Ti/SiC fibre composites and components,' Materials Science and Technology, Vol. 14, 1998, pp. 864-872   DOI   ScienceOn
15 Baudelet, B. and Suery, M., 'Plastic stability and strain to fracture during superplastic deformation,' Superplasticity and Superplastic Forming (Ed. Hamilton, C.H and Paton, N.E.), Proc. Int. Conf., Washington, USA, 1988, pp. 135-148
16 Bampton, C. C. and Graves, J. A., 'Process modeling for titanium aluminide matrix composites,' Proc. Mat. Res. Soc. Symp., Vol. 273, 1992, pp. 365-376   DOI
17 Nicolaou, P. D., Piehler, H. R. and Saigal, S., 'Process parameter selection for the consolidation of continuous fiber reinforced composites using finite element simulations,' Int. J. Mech. Sci .. Vol. 37, No.7, 1995, pp. 669-690   DOI   ScienceOn
18 Zhou, M. and Dunne, F. P. E., 'Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy,' J. of Strain Analysis, Vol. 31, 1996, pp. 187-196   DOI
19 이정서, 박종진, '열간압연 중 발생하는 강판재 내의 재결정 거동 예측,' 한국소성가공학회지, 제7권, 제2호, 1998, pp. 150-156
20 Becker, R., 'The effect of porosity distribution on ductile failure,' J. of Mech. and Phys. of Solids, Vol. 35, No.5, 1986, pp. 577-599
21 곽우진, 이경종, 권오준, 황상무, '열간단조공정증 강의 재결정거동 유한요소해석,' 한국소성가공학회지, 제5권, 제4호, 1996, pp. 305-319
22 Sellars, C. M., 'The physical metallurgy of hot working,' Hot working and forming processes, Sellars, C. M. and Davies, G. J., eds., TMS, London, 1979, pp. 3-15
23 Polmear, I. J., Light Alloys: Metallurgy or the light metals, 3rd ed., Arnold book co., London, 1995, pp. 175-187
24 Pilling, J. and Ridley, N., Superplasticity in Crystalline Solids, The Institute of Metals, 1989
25 Cahn, R. W. and Haasen, P., Physical metallurgy, Vol 3, Elsevier Science B.V., Netherlands, 1996
26 Kim, T-W. and Dunne, F. P. E., 'Determination of superplastic constitutive equations and strain rate sensitivities for aerospace alloys,' Proc Instn Mech Engrs, Vol. 211, 1997, pp. 367-380   DOI
27 Gurson, A. L., 'Continuum theory of ductile rupture by void nucleation and growth: part I- yield criteria and flow rules for porous ductile media,' Tran. of the ASME, Vol. 99, No. 1, 1977, pp. 2-15
28 김준환, 김태원, 'SiC-Ti 금속기 복합재료의 강화거동에 관한 미시역학적 모델,' 한국복합재료학회지, 제 16권, 제 3호, 2004, pp. 1-8
29 Nicolaou, P. D., Piehler, H. R. and Kuhni, M. A., 'Fabrication of Ti-6Al-4V matrix, SCS-6 fiber composites by hot pressing using the foil-fiber-foil technique,' Development in Ceramic and Metal-Matrix Composites(Ed. Upadhya, K.), The Minerals, Metals & Materials Society, 1991, pp. 37-47