Modeling the Heterogeneous Microstructures of Ti-MMCs in Consolidation Process

강화공정에 따른 비균질 티타늄 금속기 복합재료 모델링

  • 이수윤 (한양대학교 기계설계학과 대학원) ;
  • 김태원 (한양대학교 기계공학부)
  • Published : 2005.06.01

Abstract

Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil method. Heterogeneous microstructures prior to and following consolidation have been quantified, and the relations to densification behavior investigated. As shown by the results, dramatic variations of the microstructures including equiaxed $\alpha$, transformed $\beta$ and $ Widmanst\ddot{a}tten$ $\alpha$ are obtained during the process according to the fiber distributions. The dependence of microstructures on the consolidation then has been explained in terms of the change in mechanisms such as grain growth and recrystallization that occur with changing levels of inhomogeneity of deformation. Further, micro-mechanics based constitutive model enabling the evolution of density over time together with the evolutions of microstructure to be predicted has been developed. The mode developed is then implemented into finite element scheme so that practical process simulation has been carried out.

고온진공간압 성형기술 및 포일-섬유-포일 방식을 이용하여 티타늄금속기 복합재료를 개발하였다. 이와 관련하여 강화공정 전후의 비균질 미시조직의 변화를 관측하였으며 공정 진행에 따른 충진거동도 함께 비교분석하였다. 결과에서 알 수 있듯이 강화공정 동안 섬유의 분포 형태에 따라 등축 $\alpha$, transformed $\beta$$ Widmanst\ddot{a}tten$ $\alpha$ 등 상당한 미시조직의 변화가 확인되었다. 공정 진행에 따른 미시조직의 변화는 따라서 변형에 대한 기지재료의 불균일 정도와 관련한 결정립성장 및 재결정과 같은 변형기구들로 설명할 수 있었다. 이와 같은 변형기구 해석을 바탕으로 공정에 따른 기공의 충진 정도와 조직의 변화를 예측하기 위한 미시역학적 구성방정식이 개발되었으며, 또한 유한요소 해석을 통해 실공정 과정을 보다 정밀하게 예측할 수 있었다.

Keywords

References

  1. Mall, S., Fecke, T. and Foringer, M. A., Titanium Matrix Composites: Mechanical Behavior(Ed.. Mall, S. and Nicholas, T.), Technomic publishing, 1998, pp. 1-22
  2. Partridge, P. G. and Ward-Close, C. M., 'Processing of advanced continuous fibre composites: Current practice and potential developments,' Int. Mater. Reviews, Vol. 38, No. 1, 1993, pp. 1-23
  3. Bampton, C. C. and Graves, J. A., 'Process modeling for titanium aluminide matrix composites,' Proc. Mat. Res. Soc. Symp., Vol. 273, 1992, pp. 365-376 https://doi.org/10.1557/PROC-273-365
  4. Nicolaou, P. D., Piehler, H. R. and Kuhni, M. A., 'Fabrication of Ti-6Al-4V matrix, SCS-6 fiber composites by hot pressing using the foil-fiber-foil technique,' Development in Ceramic and Metal-Matrix Composites(Ed. Upadhya, K.), The Minerals, Metals & Materials Society, 1991, pp. 37-47
  5. Guo, Z. X., 'Towards cost effective manufacturing of Ti/SiC fibre composites and components,' Materials Science and Technology, Vol. 14, 1998, pp. 864-872 https://doi.org/10.1179/026708398790613443
  6. Derby, B., 'The dependence of grain size on stress during dynamic recrystallisation,' Acta Metall. Mater., Vol. 39, 1991, pp. 955-962 https://doi.org/10.1016/0956-7151(91)90295-C
  7. Paton, N. E. and Hamilton, C. H., 'Microstructural influence on superplasticity in Ti-6Al-4V,' Met. Trans., Vol. 10A, 1979, pp. 241-250
  8. Baudelet, B. and Suery, M., 'Plastic stability and strain to fracture during superplastic deformation,' Superplasticity and Superplastic Forming (Ed. Hamilton, C.H and Paton, N.E.), Proc. Int. Conf., Washington, USA, 1988, pp. 135-148
  9. Sellars, C. M., 'The physical metallurgy of hot working,' Hot working and forming processes, Sellars, C. M. and Davies, G. J., eds., TMS, London, 1979, pp. 3-15
  10. 이정서, 박종진, '열간압연 중 발생하는 강판재 내의 재결정 거동 예측,' 한국소성가공학회지, 제7권, 제2호, 1998, pp. 150-156
  11. Cahn, R. W. and Haasen, P., Physical metallurgy, Vol 3, Elsevier Science B.V., Netherlands, 1996
  12. Kurzydlowski, J. K. and Ralph, B., The Quantitative Description of the Microstructure of Materials, CRC Press, New York, 1995
  13. Ding, R., Guo, Z. X. and Wilson, A., 'Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing,' Materials Science and Engineering, Vol. A327, 2002, pp. 233-245
  14. Porter, D. A. and Easterling, K. E., Phase transformatin in metals, 2nd ed., Champman & Hall, London, 1992
  15. Polmear, I. J., Light Alloys: Metallurgy or the light metals, 3rd ed., Arnold book co., London, 1995, pp. 175-187
  16. Gurson, A. L., 'Continuum theory of ductile rupture by void nucleation and growth: part I- yield criteria and flow rules for porous ductile media,' Tran. of the ASME, Vol. 99, No. 1, 1977, pp. 2-15
  17. Tvergaard, V., 'Influence of voids on shear band instabilities under plane strain conditions,' Int. J. of Fracture, Vol. 17, No.4, 1981, pp. 389-407 https://doi.org/10.1007/BF00036191
  18. Becker, R., 'The effect of porosity distribution on ductile failure,' J. of Mech. and Phys. of Solids, Vol. 35, No.5, 1986, pp. 577-599
  19. 김준환, 김태원, 'SiC-Ti 금속기 복합재료의 강화거동에 관한 미시역학적 모델,' 한국복합재료학회지, 제 16권, 제 3호, 2004, pp. 1-8
  20. Hamilton, C. H., 'Superplastic in titanium alloys,' Proc. Symp. on Superplastic Forming, LA, CA, USA, 1984, pp. 13-49
  21. Pilling, J. and Ridley, N., Superplasticity in Crystalline Solids, The Institute of Metals, 1989
  22. Nieh, T. G., Wadsworth, J., and Sherby, O. D., Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, 1997
  23. 김태원, '항공기용 합금에서 초소성거동 해석을 위한 구성방정식 개발,' 한국항공우주학회지, 제 29권, 제 6호, 2001, pp. 24-33
  24. Kim, T-W. and Dunne, F. P. E., 'Determination of superplastic constitutive equations and strain rate sensitivities for aerospace alloys,' Proc Instn Mech Engrs, Vol. 211, 1997, pp. 367-380 https://doi.org/10.1243/0954410971532730
  25. Lemaitre, L. and Chaboche, J-L., Mechanics of solid materials, Cambridge Univ. Press, Cambridge, 1990
  26. Sellars, C. M., 'Modelling microstructural development during hot rolling,' Materials science and technology, Vol. 6, 1990, pp. 1072-1081 https://doi.org/10.1179/026708390790189966
  27. 곽우진, 이경종, 권오준, 황상무, '열간단조공정증 강의 재결정거동 유한요소해석,' 한국소성가공학회지, 제5권, 제4호, 1996, pp. 305-319
  28. Nicolaou, P. D., Piehler, H. R. and Saigal, S., 'Process parameter selection for the consolidation of continuous fiber reinforced composites using finite element simulations,' Int. J. Mech. Sci .. Vol. 37, No.7, 1995, pp. 669-690 https://doi.org/10.1016/0020-7403(94)00092-X
  29. Zhou, M. and Dunne, F. P. E., 'Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy,' J. of Strain Analysis, Vol. 31, 1996, pp. 187-196 https://doi.org/10.1243/03093247V313187