• Title/Summary/Keyword: *-prime ring and *-ideal

Search Result 157, Processing Time 0.026 seconds

A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS

  • Demir, Cagri;Argac, Nurcan
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.483-494
    • /
    • 2010
  • Let R be a non-commutative prime ring and I a non-zero left ideal of R. Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n,\;x^r]_k\;=\;0$ for all x $\in$ I, then there exists a $\in$ U such that g(x) = xa for all x $\in$ R except when $R\;{\cong}\;=M_2$(GF(2)) and I[I, I] = 0.

A NOTE OF PI-RINGS WITH RESTRICTED DESCENDING

  • Hong, Chan-Yong
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • In this paper, some properties for a PI-ring satisfying the descending chain condition on essential left ideals are studied: Let R be a ring with a polynomial identity satisfying the descending chain condition on essential ideals. Then all minimal prime ideals in R are maximal ideals. Moreover, if R has only finitely many minimal prime ideals, then R is left and right Artinian. Consequently, if every primeideal of R is finitely generated as a left ideal, then R is left and right Artinian. A finitely generated PI-algebra over a commutative Noetherian ring satisfying the descending chain condition on essential left ideals is a finite module over its center.(omitted)

  • PDF

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

Normal Pairs of Going-down Rings

  • Dobbs, David Earl;Shapiro, Jay Allen
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Let (R, T) be a normal pair of commutative rings (i.e., R ${\subseteq}$ T is a unita extension of commutative rings, not necessarily integral domains, such that S is integrally closed in T for each ring S such that R ${\subseteq}$ S ${\subseteq}$ T) such that the total quotient ring of R is a von Neumann regular ring. Let P be one of the following ring-theoretic properties: going-down ring, extensionally going-down (EGD) ring, locally divided ring. Then R has P if and only if T has P. An example shows that the "if" part of the assertion fails if P is taken to be the "divided domain" property.

INTEGRAL CLOSURE OF A GRADED NOETHERIAN DOMAIN

  • Park, Chang-Hwan;Park, Mi-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.449-464
    • /
    • 2011
  • We show that, if R is a graded Noetherian ring and I is a proper ideal of R generated by n homogeneous elements, then any prime ideal of R minimal over I has h-height ${\leq}$ n, and that if R is a graded Noetherian domain with h-dim R ${\leq}$ 2, then the integral closure R' of R is also a graded Noetherian domain with h-dim R' ${\leq}$ 2. We also present a short improved proof of the result that, if R is a graded Noetherian domain, then the integral closure of R is a graded Krull domain.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

  • Hong, Joo-Youn;Lee, Hei-Sook;Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.427-436
    • /
    • 2005
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.

ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS

  • Badawi, Ayman;Tekir, Unsal;Yetkin, Ece
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1163-1173
    • /
    • 2014
  • Let R be a commutative ring with $1{\neq}0$. In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a,b,c{\in}R$ and $abc{\in}I$, then $ab{\in}I$ or $ac{\in}\sqrt{I}$ or $bc{\in}\sqrt{I}$. A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.

ON M-INJECTIVE MODULES AND M-IDEALS

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • For a left R-module M, we identify certain submodules of M that play a role analogous to that of ideals in the ring R. We investigate some properties of M-ideals in the submodules of M and also study Jacobson radicals of a submodule of M.

  • PDF