A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS

Çağrı Demir and Nurcan Argaç

ABSTRACT. Let R be a non-commutative prime ring and I a non-zero left ideal of R. Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n, x^r]_k = 0$ for all $x \in I$, then there exists $a \in U$ such that g(x) = xa for all $x \in R$ except when $R \cong M_2(GF(2))$ and I[I, I] = 0.

1. Introduction

Throughout this paper unless specially stated, R always denotes a prime ring with center Z(R), extended centroid C, left Utumi quotient ring U, and two sided Martindale quotient ring Q. For any $x, y \in R$, we set $[x, y]_1 = [x, y] =$ xy - yx and $[x, y]_k = [[x, y]_{k-1}, y]$ for k > 1.

We mean by a derivation of R an additive mapping d from R into itself which satisfies the rule d(xy) = d(x)y + xd(y) for all $x, y \in R$. A well-known result proved by Posner [21] states that R must be commutative if there exists a nonzero derivation d of R such that [d(x), x] = 0 for all $x \in R$. Many related generalizations have been obtained by a number of authors in the literature (e.g., see, [10], [14], [15], [16]).

An additive mapping $g : R \to R$ is called a generalized derivation of R if there exists a derivation d of R such that g(xy) = g(x)y + xd(y) for all $x, y \in R$ [9]. Obviously any derivation is a generalized derivation. Moreover, another basic example of a generalized derivation is the mapping of the form g(x) = ax + xb for $a, b \in R$. Many authors have studied generalized derivations in the context of prime and semiprime rings (see [1], [2], [3], [13], [9], [18]).

In [13], T. K. Lee extended the definition of a generalized derivation as follows. By a generalized derivation he means an additive mapping $g: J \to U$ such that g(xy) = g(x)y + xd(y) for all $x, y \in J$, where U is the right Utumi

Received July 3, 2008.

483

O2010 The Korean Mathematical Society

²⁰⁰⁰ Mathematics Subject Classification. 16N60, 16W25, 16U80.

Key words and phrases. prime rings, derivations, generalized derivations, left Utumi quotient rings, two-sided Martindale quotient ring, differential identities, Engel condition.

This research has been supported by The Scientific and Technological Research Council of Turkey, TUBITAK, No: 108T257.

quotient ring of R, J is a dense right ideal of R and d is a derivation from J to U. He also proved that every generalized derivation can be uniquely extended to a generalized derivation of U. In fact, there exists $a \in U$ and a derivation d of U such that g(x) = ax + d(x) for all $x \in U$ [13, Theorem 3]. A corresponding form to dense left ideals as follows. Let I be a dense left ideal of R and U be the left Utumi quotient ring of R. An additive mapping $g: I \to U$ is called a generalized derivation if there exists a derivation $d: I \to U$ such that g(xy) = xg(y) + d(x)y for all $x, y \in I$. Following the same methods in [13], one can extend g uniquely to a generalized derivation of U, which we will also denote by g, and g assumes the form g(x) = xa + d(x) for all $x \in U$ and some $a \in U$, where d_a denotes the inner derivation induced by the element $a \in U$, i.e., $d_a(x) = [a, x]$. Setting $\delta = d - d_a$, we may always assume that a generalized derivation of u.

In [11], C. Lanski proved that if R is a prime ring with derivation d, I is a left ideal of R, and k, n are positive integers such that $[d(x^k), x^k]_n = 0$ for all $x \in I$, then either d = 0 or R is commutative. In [1], this result extended to generalized derivations.

In [17], T. K. Lee and W. K. Shiue showed that if R is a non-commutative prime ring, I is a nonzero left ideal of R and d is a derivation of R such that $[d(x^m)x^n, x^r]_k = 0$ for all $x \in I$, where k, m, n, r are fixed positive integers, then d = 0 except when $R \cong M_2(GF(2))$.

The aim of the present paper is to extend this result to generalized derivations. Precisely, we will prove the following.

Theorem 1. Let R be a non-commutative prime ring and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n, x^r]_k = 0$ for all $x \in R$, then there exists an element $a \in U$ such that g(x) = xa for all $x \in R$.

Theorem 2. Let R be a non-commutative prime ring, I a non-zero left ideal of R and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n, x^r]_k = 0$ for all $x \in I$, then there exists $a \in U$ such that g(x) = xa for all $x \in R$ except when $R \cong M_2(GF(2))$ and I[I, I] = 0.

2. Preliminaries

In what follows, unless stated otherwise, R will be a prime ring. The related object we need to mention is the left Utumi quotient ring U of R (sometimes, as in [4], U is called the maximal left ring of quotients).

The definitions, the axiomatic formulations and the properties of this quotient ring U can be found in [4].

In any case, when R is a prime ring, all we need about U is that 1) $R \subset U$:

2) U is a prime ring;

3) The center of U, denoted by C, is a field which is called the extended centroid of R.

We also frequently use the theory of generalized polynomial identities and differential identities (see [4], [10], [12], [20]). In particular we need to recall the following:

Remark 1 ([6]). If R is a prime ring and I is a non-zero left ideal of R, then I, RI and UI satisfy the same generalized polynomial identities.

Remark 2 ([10]). Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-sided ideal of R. Let $f(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n))$ be a differential identity in I, that is

$$f(r_1, \ldots, r_n, d(r_1), \ldots, d(r_n)) = 0$$
 for all $r_1, \ldots, r_n \in I$.

Then one of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that d(x) = [q, x] for all $x \in R$, and I satisfies the generalized polynomial identity

$$f(r_1,\ldots,r_n,[q,r_1],\ldots,[q,r_n])$$

or

2) I satisfies the generalized polynomial identity

 $f(x_1,\ldots,x_n,y_1,\ldots,y_n).$

3. Results

We need the following lemmas.

Lemma 1. Let $R = M_t(F)$, where F is a field, $t \ge 2$ and $a, b \in R$. Suppose that

(1)
$$[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0 \quad for \ all \ x \in R,$$

where k, m, n, r are fixed positive integers. Then $a + b \in F$.

Proof. Let e be an idempotent element in R. Setting x = e in (1) and multiplying left side by (1 - e), we see that (1 - e)(a + b)e = 0 for any idempotent element e. Thus a + b is a diagonal matrix. Note that $u(a + b)u^{-1}$ must be diagonal for each invertible element $u \in R$, since

$$[(uau^{-1})x^{m+n} + [(ubu^{-1}), x^m]x^n, x^r]_k = 0$$

for all $x \in R$. Write $a + b = \sum_{i=1}^{t} \beta_i e_{ii}$, where $\beta_i \in F$. Then for each j > 1, we see that $\beta_j - \beta_1$, the (1, j)-entry of $(1 + e_{1j})(a + b)(1 + e_{1j})^{-1}$, equals 0. That is, $\beta_j = \beta_1$ for j > 1 and hence $a + b \in F$.

Lemma 2. Let R be a non-commutative prime ring and $a, b \in R$ such that $[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0$ for all $x \in R$, where k, m, n, r are fixed positive integers. Then $a + b \in Z(R)$.

Proof. Suppose on the contrary that $a + b \notin C$. Then

$$f(X) = [(a+b)X^{m+n} - X^m bX^n, X^r]_k$$

is a nontrivial generalized polynomial identity (GPI) for R. By [6], f(X) is also a GPI for Q. Denote by F either the algebraic closure of C or C according to the cases where C is either infinite or finite, respectively. Then, by a standard argument (e.g., see [19, Proposition]), f(X) is also a GPI for $Q \otimes_C F$. Since $Q \otimes_C F$ is centrally closed prime F-algebra [7, Theorems 2.5 and 3.5], by replacing R, C with $Q \otimes_C F, F$, respectively we may assume R is centrally closed and C is either finite or algebraically closed. In view of Martindale's theorem [20], R is a primitive ring having a non-zero socle H with C as its associated division ring.

Since $a + b \notin C$, we have $[a + b, h] \neq 0$ for some $h \in H$. By Litoff's theorem [8], there exists an idempotent $e \in H$ such that $h, ah, ha, hb, bh \in eRe$. Note that ef(eXe)e is a GPI for R. Thus, $[(eae)X^{m+n} + [ebe, X^m]X^n, X^r]_k$ is a GPI for eRe. Since $eRe \cong M_s(C)$ for some $s \ge 1$ then eae + ebe is central in eRe by Lemma 1. Then there exists $c \in C$ such that ce = eae + ebe. Hence ch = eaeh + ebeh = eah + ebh = ah + bh = (a+b)h. Similarly hc = heae + hebe = hae + hbe = hae + hb = h(a+b). So [a+b,h] = 0, a contradiction. Therefore $a + b \in Z(R)$.

Corollary 1. Let R be a prime ring and $a \in R$ such that $[ax^m, x^n]_k = 0$ for all $x \in R$, where k, m, n are fixed positive integers. Then $a \in Z(R)$.

Proof of Theorem 1. As we have already noted that every generalized derivation g on a dense left ideal of R can be uniquely extended to U and assumes the form g(x) = ax + d(x) for some $a \in U$ and a derivation d on U. If d = 0, then $[ax^{m+n}, x^r]_k = 0$ for all $x \in R$. By Remark 1, U satisfies the above generalized identity. Moreover, since U remains prime by the primeness of R, replacing R with U, we may assume that $a \in R$ and C is just the center of R. By Corollary 1, we have $a \in Z(R)$. Thus g(x) = ax = xa for all $x \in R$. So we may assume that $d \neq 0$.

In the light of Remark 2, we divide the proof into two cases:

Case 1. Let d be the inner derivation induced by the element $b \in U-C$, that is, the d(x) = [b, x] for all $x \in U$. Then R satisfies the nontrivial generalized polynomial identity

$$[ax^{m+n} + [b, x^m]x^n, x^r]_k.$$

By Remark 1, U satisfies the above generalized polynomial identity. Moreover, since U remains prime by the primeness of R, replacing R with U, we may assume that $a, b \in R$ and C is just the center of R. Then by Lemma 2, we have that $a+b \in Z(R)$. Therefore g(x) = ax+[b, x] = (a+b)x-xb = x(a+b-b) = xa for all $x \in R$.

Case 2. Let now d be an outer derivation of U. To continue the proof, we set $G(Y, X) = \sum_{i=0}^{m-1} X^i Y X^{m-1-i}$, a non-commuting polynomial in variables

X and Y. Note that $d(x^m) = G(d(x), x)$. Then R satisfies the following differential identity

$$[ax^{m+n} + G(d(x), x)x^n, x^r]_k.$$

Now by Remark 2, R satisfies the identity

$$[ax^{m+n} + G(y, x)x^n, x^r]_k.$$

Taking y = 0 in the above identity, we get

 $[ax^{m+n}, x^r]_k = 0$ for all $x \in R$.

So we have

$$[d(x^m)x^n, x^r]_k = 0$$
 for all $x \in R$.

Therefore by [17, Theorem 1], we must have d = 0, a contradiction. This proves the result.

By using almost the same argument in [17], we have the following.

Lemma 3. Let $R = M_l(F)$, where F is a field, $l \ge 2$, and I a minimal left ideal of R. Suppose $[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0$ for all $x \in I$, where m, n, r, k are fixed positive integers. Then $a + b \in F$ except when $R \cong M_2(GF(2))$.

Proof. Suppose that $a + b \notin F$. Since I is a minimal left ideal, it is clear that we may assume $I = Re_{11}$. Let $e = e^2 \in I$. By the hypothesis, we have $[ae + [b, e]e, e]_k = 0$. Left multiplying by 1 - e, we see that

(2)
$$(1-e)(a+b)e = 0 \quad \text{for all } e \in I.$$

Let $\beta \in F$ and $x \in R$. Then f = e + (1 - e)xe and $g = e + \beta(1 - e)xe$ are idempotents in I. Set c = a + b, then $c \notin F$ and (1 - e)ce = 0. Thus by (2) we have (1 - f)cf = 0 = (1 - g)cg. Therefore we see that

$$((1-e) - (1-e)xe)c(e + (1-e)xe) = 0$$

and

$$((1-e) - \beta(1-e)xe)c(e + \beta(1-e)xe) = 0.$$

Using (2) we arrive at the following equations:

$$(1-e)cxe - (1-e)xce - (1-e)xec(1-e)xe = 0$$

and

$$\beta(1-e)cxe - \beta(1-e)xce - \beta^{2}(1-e)xec(1-e)xe = 0.$$

Multiplying first equation by β and comparing the last two equations we see that $(\beta^2 - \beta)(1 - e)xec(1 - e)xe = 0$ for all $x \in R$. Then either $\beta \in \{0, 1\}$ or ec(1 - e) = 0 for any idempotent $e \in I$. Suppose that the second possibility holds. In particular, $e_{11}c(1 - e_{11}) = 0$. Let $x \in R$. Then we have $xe_{11}c = xe_{11}ce_{11} = \mu xe_{11}$ for some $\mu \in F$. Thus we see that $I(c - \mu) = Re_{11}(c - \mu) = 0$ for some $\mu \in F$. On the other hand, in view of (2) we get [c, e] = 0 for any idempotent $e \in I$. Then $0 = [c, e] = [c - \mu, e] = (c - \mu)e$ for all idempotent

 $e \in I$. Note that $e_{11} + (1 - e_{11})xe_{11} \in I$ is also an idempotent for every $x \in R$. Hence $(c - \mu)(e_{11} + (1 - e_{11})xe_{11}) = 0$ for all $x \in R$. Since $(c - \mu)e_{11} = 0$, it is clear that $(c - \mu)Re_{11} = 0$. Therefore $c = \mu \in F$, a contradiction. Thus we get F = GF(2).

Now we prove that l = 2. Suppose on the contrary that l > 2. Let i, j be two distinct positive integers such that $2 \le i, j \le l$. Then $e_{11}, e_{11} + e_{i1}, e_{11} + e_{j1}$ and $e_{11} + e_{i1} + e_{j1}$ are idempotents in I. In view of (2) we obtain that

$$ce_{11} = e_{11}ce_{11},$$

$$c(e_{11} + e_{i1}) = (e_{11} + e_{i1})c(e_{11} + e_{i1}),$$

$$c(e_{11} + e_{j1}) = (e_{11} + e_{j1})c(e_{11} + e_{j1})$$

and

(3)
$$c(e_{11} + e_{i1} + e_{j1}) = (e_{11} + e_{i1} + e_{j1})c(e_{11} + e_{i1} + e_{j1}).$$

Using $ce_{11} = e_{11}ce_{11}$ and comparing the other equations in (3), we arrive at $e_{i1}ce_{j1} + e_{j1}ce_{i1} = 0$. Set $c = \sum_{1 \le i, j \le l} \beta_{ij}e_{ij}$, where $\beta_{ij} \in F$. Then this implies that $\beta_{1j} = 0 = \beta_{1i}$. Hence the second equation in (3) reduces to $ce_{i1} = \beta_{11}e_{i1}$, and so $\beta_{pi} = 0$ for $p \neq i$ and $\beta_{ii} = \beta_{11}$. Thus we get $c = a + b \in F$, a contradiction. This proves the lemma.

Lemma 4. Let R be a prime ring, I a non-zero left ideal of R and $a \in R$ such that $[ax^m, x^n]_k = 0$ for all $x \in I$, where k, m, n are fixed positive integers. Then $a \in Z(R)$ except when $R \cong M_2(GF(2))$ and I[I, I] = 0.

Proof. Assume that $[ax^m, x^n]_k = 0$ for all $x \in I$. Then

$$[[a, x^n]x^m, x^n]_k = [ax^m, x^n]_{k+1} = 0$$

for all $x \in I$. Now by [17, Lemma 3] we have $a \in Z(R)$ except when $R \cong M_2(GF(2))$ and I[I, I] = 0.

Lemma 5. Let R be a non-commutative prime ring and I a non-zero left ideal and $a, b \in R$ such that

(4)
$$[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0 \text{ for all } x \in I,$$

where k, m, n, r are fixed positive integers. Then $a + b \in Z(R)$ except when $R \cong M_2(GF(2))$ and I[I, I] = 0.

Proof. Assume that $a + b \notin C$. If $I(b - \beta) = 0$ for some $\beta \in C$, then setting $b' = b - \beta$ we have Ib' = 0. Moreover by (4) it is clear that

$$[ax^{m+n} + [b', x^m]x^n, x^r]_k = 0$$
 for all $x \in I$

Thus we get

(5)
$$[(a+b')x^{m+n}, x^r]_k = 0 \quad \text{for all } x \in I$$

By Remark 1, $[(a + b')x^{m+n}, x^r]_k = 0$ for all $x \in UI$. Moreover UIb' = 0 if and only if Ib' = 0. Now I and UI satisfy the same basic conditions. Hence

replacing R, I with U, UI, respectively, we may assume that $a, b' \in R$ and C is just the center of R. Thus we get the conclusion $R \cong M_2(GF(2))$ and I[I, I] = 0 since $a + b' \notin C$.

So we may assume that $I(b - \beta) \neq 0$ for all $\beta \in C$. Hence, in view of [14, Lemma 3], either R is a PI-ring or there exists an element $u \in I$ such that ub and u are C-independent. For the latter case,

$$[a(Xu)^{m+n} + [b, (Xu)^m](Xu)^n, (Xu)^r]_k$$

is a non-trivial GPI for R.

On the other hand we have $[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0$ for all $x \in QI$ by [6]. Thus applying the same argument in Lemma 2 and replacing I by QI, we may assume that R is a centrally closed prime ring having a non-zero socle H, with C as its associated division ring and I = IC. Moreover C is either algebraically closed or finite. If R contains no non-trivial idempotents, then R is a division ring and I = R. Then by the proof of Theorem 1 we obtain that $a + b \in C$, a contradiction. So we may assume that R contains a non-trivial idempotent. On the other hand we have

- I[I, I] = 0 if and only if HI[HI, HI] = 0 by [6],

- $I(b - \mu) = 0$ if and only if $HI(b - \mu) = 0$ for some $\mu \in C$.

So replacing I by HI we may assume $I \subseteq H$. Suppose first that $I[I, I] \neq 0$. Then I always contains an idempotent with rank 2 or greater that 2. Let e be such an idempotent in I.

Now choose x as exe in (4), then

$$[a(exe)^{m+n} + [b, (exe)^m](exe)^n, (exe)^r]_k = 0 \quad \text{for all } x \in R,$$

and left-side multiplying by e yields

$$[(eae)(exe)^{m+n} + [ebe, (exe)^m](exe)^n, (exe)^r]_k = 0 \quad \text{for all } x \in R.$$

But $eRe \cong M_l(C)$, where $l = \operatorname{rank}(e) \ge 2$. By Lemma 2 we have $e(a+b)e \in Ce$. Choosing x = e in (4), we get (a+b)e - e(a+b)e = 0. Then $ae + be \in Ce$ for every idempotent $e \in I$ with $\operatorname{rank}(e) \ge 2$. Note that $e + (1-e)xe \in I$ is also an idempotent for all $x \in R$ and $\operatorname{rank}(e + (1-e)xe) = \operatorname{rank}(e) \ge 2$. Set c = a + b, so $ce \in Ce$ for all idempotent $e \in I$ with $\operatorname{rank}(e) \ge 2$. In particular we have

$$c(e + (1 - e)xe) \in C(e + (1 - e)xe)$$

for all $x \in R$. Left-side multiplying by e yields that

$$ece + ecxe - ecexe \in Ce.$$

Since $ece = ce \in Ce$, we get $[e, c]xe \in Ce$ for all $x \in R$. Suppose for the moment that $[e, c] \neq 0$. Choose $x_0 \in R$ such that $[e, c]x_0e = \beta e \neq 0$ for some $\beta \in C$. Then we have $\beta exe = [e, c]x_0exe \in Ce$. Therefore eRe = Ce, because $\beta \neq 0$. But eRe = Ce implies that rank(e) = 1, a contradiction. Hence [e, c] = 0. Now since I is completely reducible left H-module, each element of I is contained in Hf for some $f^2 = f \in I$ with rank $(f) \geq 2$. But $fc = cf \in Cf$.

Let $x \in I$. Then x = hf for some $h \in H$. We see that $xc = hfc \in Chf = Cx$, and so [xc, x] = 0 for all $x \in I$. Linearizing this last equation, we get

(6)
$$[xc, y] + [yc, x] = 0 \text{ for all } x, y \in I.$$

Replacing y = e in (6) and using the fact that [e, c] = 0, we obtain

0 = [xc, e] + [ec, x] = e[c, x] for all $x \in I$.

Hence we have 0 = e[c, xy] = ex[c, y] for all $x, y \in I$. Therefore we get eRI[c, I] = (0), and so I[c, I] = 0. In particular, [x[c, x], x] = 0 for all $x \in I$. So in view of [17, Lemma 3(ii)] one obtains $I(c - \lambda) = 0$ for some $\lambda \in C$. Let $x \in R$, then it is clear that $f = e + (1 - e)xe \in I$ is an idempotent with rank $(f) = \operatorname{rank}(e) \ge 2$. Since [c, e] = 0 for all $e = e^2 \in I$ with rank $(e) \ge 2$, in particular we have

$$(c - \lambda, e + (1 - e)xe] = 0$$
 for all $x \in R$.

Hence we get $(c - \lambda)e + (c - \lambda)(1 - e)xe = 0$. On the other hand we have $(c - \lambda)e = [c - \lambda, e] = 0$. So $(c - \lambda)xe = 0$ for all $x \in R$. Thus the primeness of R implies that $c = \lambda \in C$, and hence $a + b = c \in Z(R)$, a contradiction. This proves that I[I, I] = 0.

If now $H \cong M_l(C)$ for some $l \ge 2$, then in view of Lemma 3, we are done. Thus we may assume $H \not\cong M_l(C)$ for all $l \ge 2$. Since $c \notin C$, it is clear that $ch \ne hc$ for some $h \in I$. It follows from Litoff's theorem [8] that there exists $e = e^2 \in H$, rank $(e) \ge 3$, such that $ch, hc, h \in eHe$. Note that $ece \notin Ce$. Indeed, if $ece \in Ce$, then eceh = hece, and hence ch = hc, a contradiction. On the other hand, $0 \ne h \in I \cap eRe$. Since R is centrally closed, IC = I and I[I, I] = 0, it is clear that I is a minimal left ideal of R by [5, Lemma 5.1]. We also have that $I \cap eRe$ is still a minimal left ideal of eRe and $eRe \cong M_l(C)$, where $l = \operatorname{rank}(e) \ge 3$. Indeed, if J is a left ideal of eRe such that $J \subsetneq I \cap eRe$, then $RJ \subsetneq RI \subsetneqq I$. Using the fact that RJ is a left ideal of R such that $RJ \subsetneq I$ and I is a minimal ideal of R, we get RJ = 0. Hence J = 0 by the primeness of R. Now by the hypothesis, we have

 $[(eae)(exe)^{m+n} + [ebe, (exe)^m](exe)^n, (exe)^r]_k = 0 \quad \text{for all } x \in R,$

and so

 $[(eae)x^{m+n} + [ebe, x^m]x^n, x^r]_k = 0 \quad \text{for all } x \in I \cap eRe.$

In view of Lemma 3 this yields that $eRe \cong M_2(GF(2))$, a contradiction. This proves the result.

Example 1. Let $R = M_s(F)$, s > 1, the $s \times s$ matrices over a field F and $I = Re_{11}$. If we set $a = 1 - e_{s1}$ and $b = e_{s1}$, then $[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0$ for all $x \in I$, where k, m, n, r are fixed positive integers and $a + b \in Z(R)$.

Proof of Theorem 2. As we have already noted that every generalized derivation g on a dense left ideal of R can be uniquely extended to U, we may assume that g has the form g(x) = ax + d(x) for some $a \in U$ and a derivation d on U. If d = 0, then $[ax^{m+n}, x^r]_k = 0$ for all $x \in I$. Then by Lemma 4 we have $a \in C$

except when $R \cong M_2(GF(2))$ and I[I, I] = 0. If $a \in C$, then g(x) = ax = xa for all $x \in R$. So we may assume that $d \neq 0$.

In the light of Remark 2, we divide the proof into two cases:

Case 1. Let d be the inner derivation induced by the element $b \in U - C$, that is, d(x) = [b, x] for all $x \in U$. Then I satisfies the nontrivial generalized polynomial identity

$$[aX^{m+n} + [b, X^m]X^n, X^r]_k.$$

By Remark 1, RI satisfies the above generalized identity. Since by [4], R and U satisfy the same GPIs, we have that UI satisfies above identity. Then applying Lemma 5 to UI, we have that $a + b \in C$ except when $U \cong M_2(GF(2))$ and UI[UI, UI] = 0. Moreover as in the proof of Lemma 5 we may replace R, I by U, UI, respectively. Then in particular, $a+b \in C$ except when $R \cong M_2(GF(2))$ and I[I, I] = 0. If $a + b \in C$, then g(x) = ax + [b, x] = (a + b)x - xb = x(a + b - b) = xa for all $x \in R$.

Case 2. Let now d be an outer derivation of U. To continue the proof we set $G(Y, X) = \sum_{i=0}^{m-1} X^i Y X^{m-1-i}$, a non-commuting polynomial in variables X and Y. Note that $d(x^m) = G(d(x), x)$. Since

$$[ax^{m+n} + G(d(x), x)x^n, x^r]_k.$$

is an identity for I, then for any $u \in I - C$

$$[a(xu)^{m+n} + G(d(xu), xu)(xu)^n, (xu)^r]_k$$

is an identity for R. Thus R satisfies the following

$$[a(xu)^{m+n} + G(d(x)u + xd(u), xu)(xu)^n, (xu)^r]_k.$$

From Remark 2, since d is an outer derivation R satisfies the following identity

(7)
$$[a(xu)^{m+n} + G(yu + xd(u), xu)(xu)^n, (xu)^r]_k$$

Taking y = 0 in (7) we get

(8)
$$[a(xu)^{m+n} + G(xd(u), xu)(xu)^n, (xu)^r]_k = 0.$$

By the linearity of g(Y, X) on Y, subtracting equation (7) from (8) yields that R satisfies

$$[G(yu, xu)(xu)^n, (xu)^r]_k = 0,$$

which means that R satisfies

(9)
$$0 = \left[\sum_{i+j=m-1} (xu)^{i} (yu) (xu)^{j+n}, (xu)^{r}\right]_{k}$$
$$= \sum_{i+j=m-1} (xu)^{i} [(yu), (xu)^{r}]_{k} (xu)^{j+n}.$$

Clearly (9) is a nontrivial GPI for R, since $u \notin C$. So RC is a primitive ring with a non-zero socle H ([20]). J = HI is a non-zero left ideal of H. Note that H is simple, J = HJ and J satisfies the same basic conditions as I ([12]). Now

replace R by H and I by J, then, without loss of generality, R is simple and equal to its own socle and RI = I. Let $e^2 = e$ be some non-trivial idempotent in I. So for all $x, y \in R$, we have

$$\sum_{k+j=m-1} (xe)^{i} [(ye), (xe)^{r}]_{k} (xe)^{j+n} = 0$$

and choosing $y = (1 - e)r \in R$ we get

i

$$(1-e)(re)(xe)^{kr+m+n-1} = 0.$$

This leads to the contradiction that either e = 0 or e = 1. Thus any idempotent element of I is trivial, that is, I = R. Therefore we have to consider the condition

$$\sum_{i+j=m-1} x^i [y, x^r]_k x^{j+n} = 0$$

for all $x, y \in R$, which is a polynomial identity. From Lemma 2 in [11], it follows that there exists a suitable field F such that $R \subseteq M_s(F)$, the ring of all $s \times s$ matrices over F, and moreover $M_s(F)$ satisfies the same polynomial identity of R. In particular $M_s(F)$ satisfies

(10)
$$\sum_{i+j=m-1} x^{i} [y, x^{r}]_{k} x^{j+n} = 0$$

Suppose $s \ge 2$ and choose $x = e_{11}$ and $y = e_{21}$ in (10). Then we have $e_{21} = 0$. Thus s = 1 and R is commutative, a contradiction.

The following example shows our results do not hold in semiprime rings:

Example 2. Let F be any field. Consider the semiprime ring

$$R = \begin{pmatrix} GF(2) & GF(2) & 0\\ GF(2) & GF(2) & 0\\ 0 & 0 & F \end{pmatrix}.$$

Let

$$I = \begin{pmatrix} GF(2) & 0 & 0\\ GF(2) & 0 & 0\\ 0 & 0 & F \end{pmatrix}$$

be the left ideal of R. If $a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$ for $\alpha \in F$ fixed, one can easily see that $[ax^2 + [b, x]x, x] = 0$ for all $x \in I$, since uv(u + v) = 0 for all $u, v \in GF(2)$. Then g(x) = ax + [b, x] = (a+b)x - xb is a generalized derivation such that [g(x)x, x] = 0 for all $x \in I$. But

$$a+b \notin C = \left\{ \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix} \mid \lambda \in GF(2), \mu \in F \right\}.$$

References

- [1] E. Albaş, N. Argaç, and V. De Filippis, *Generalized derivations with Engel conditions* on one-sided ideals, Comm. Algebra **36** (2008), no. 6, 2063–2071.
- [2] N. Argaç, L. Carini, and V. De Filippis, An Engel condition with generalized derivations on Lie ideals, Taiwanese J. Math. 12 (2008), no. 2, 419–433.
- [3] N. Argaç, V. De Filippis, and H. G. Inceboz, *Generalized derivations with power central values on multilinear poynomials on right ideals*, to appear in Rendiconti di Padova,
- [4] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York, 1996.
- [5] M. Bresar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. 3, 764–786.
- [6] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728.
- [7] J. S. Erickson, W. S. Martindale III, and J. M. Osborn, *Prime nonassociative algebras*, Pacific J. Math. **60** (1975), no. 1, 49–63.
- [8] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hungar 14 (1963), 369–371.
- [9] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166.
- [10] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220–238, 242–243.
- [11] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (1997), no. 2, 339–345.
- [12] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27–38.
- [13] _____, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057–4073.
- [14] _____, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3159–3165.
- [15] _____, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), no. 4, 445–449.
- [16] _____, Derivations with Engel conditions on polynomials, Algebra Colloq. 5 (1998), no. 1, 13–24.
- [17] T. K. Lee and W. K. Shiue, A result on derivations with Engel condition in prime rings, Southeast Asian Bull. Math. 23 (1999), no. 3, 437–446.
- [18] _____, Identities with generalized derivations, Comm. Algebra **29** (2001), no. 10, 4437–4450.
- [19] P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), no. 1, 1–5.
- [20] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.
- [21] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.

ÇAĞRI DEMIR DEPARTMENT OF MATHEMATICS SCIENCE FACULTY EGE UNIVERSITY 35100, BORNOVA, IZMIR, TURKEY *E-mail address*: cagri.demir@ege.edu.tr NURCAN ARGAÇ DEPARTMENT OF MATHEMATICS SCIENCE FACULTY EGE UNIVERSITY 35100, BORNOVA, IZMIR, TURKEY *E-mail address:* nurcan.argac@ege.edu.tr