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A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL
CONDITIONS ON ONE-SIDED IDEALS

Çaǧri Demir and Nurcan Argaç

Abstract. Let R be a non-commutative prime ring and I a non-zero
left ideal of R. Let U be the left Utumi quotient ring of R and C be
the center of U and k, m, n, r fixed positive integers. If there exists a
generalized derivation g of R such that [g(xm)xn, xr]k = 0 for all x ∈ I,
then there exists a ∈ U such that g(x) = xa for all x ∈ R except when
R ∼= M2(GF (2)) and I[I, I] = 0.

1. Introduction

Throughout this paper unless specially stated, R always denotes a prime
ring with center Z(R), extended centroid C, left Utumi quotient ring U , and
two sided Martindale quotient ring Q. For any x, y ∈ R, we set [x, y]1 = [x, y] =
xy − yx and [x, y]k = [[x, y]k−1, y] for k > 1.

We mean by a derivation of R an additive mapping d from R into itself
which satisfies the rule d(xy) = d(x)y + xd(y) for all x, y ∈ R. A well-known
result proved by Posner [21] states that R must be commutative if there exists
a nonzero derivation d of R such that [d(x), x] = 0 for all x ∈ R. Many related
generalizations have been obtained by a number of authors in the literature
(e.g., see, [10], [14], [15], [16]).

An additive mapping g : R → R is called a generalized derivation of R
if there exists a derivation d of R such that g(xy) = g(x)y + xd(y) for all
x, y ∈ R [9]. Obviously any derivation is a generalized derivation. Moreover,
another basic example of a generalized derivation is the mapping of the form
g(x) = ax+xb for a, b ∈ R. Many authors have studied generalized derivations
in the context of prime and semiprime rings (see [1], [2], [3], [13], [9], [18]).

In [13], T. K. Lee extended the definition of a generalized derivation as
follows. By a generalized derivation he means an additive mapping g : J → U
such that g(xy) = g(x)y + xd(y) for all x, y ∈ J , where U is the right Utumi
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quotient ring of R, J is a dense right ideal of R and d is a derivation from
J to U . He also proved that every generalized derivation can be uniquely
extended to a generalized derivation of U . In fact, there exists a ∈ U and a
derivation d of U such that g(x) = ax + d(x) for all x ∈ U [13, Theorem 3]. A
corresponding form to dense left ideals as follows. Let I be a dense left ideal of
R and U be the left Utumi quotient ring of R. An additive mapping g : I → U
is called a generalized derivation if there exists a derivation d : I → U such
that g(xy) = xg(y) + d(x)y for all x, y ∈ I. Following the same methods in
[13], one can extend g uniquely to a generalized derivation of U , which we will
also denote by g, and g assumes the form g(x) = xa + d(x) for all x ∈ U and
some a ∈ U , where d is a derivation of U . Notice that g(x) = ax + (d− da)(x)
for all x ∈ U , where da denotes the inner derivation induced by the element
a ∈ U , i.e., da(x) = [a, x]. Setting δ = d − da, we may always assume that a
generalized derivation of a prime ring is of the form g(x) = ax + δ(x) for all
x ∈ U , where a ∈ U and δ is a derivation of U .

In [11], C. Lanski proved that if R is a prime ring with derivation d, I is a
left ideal of R, and k, n are positive integers such that [d(xk), xk]n = 0 for all
x ∈ I, then either d = 0 or R is commutative. In [1], this result extended to
generalized derivations.

In [17], T. K. Lee and W. K. Shiue showed that if R is a non-commutative
prime ring, I is a nonzero left ideal of R and d is a derivation of R such that
[d(xm)xn, xr]k = 0 for all x ∈ I, where k,m, n, r are fixed positive integers,
then d = 0 except when R ∼= M2(GF (2)).

The aim of the present paper is to extend this result to generalized deriva-
tions. Precisely, we will prove the following.

Theorem 1. Let R be a non-commutative prime ring and k, m, n, r fixed
positive integers. If there exists a generalized derivation g of R such that
[g(xm)xn, xr]k = 0 for all x ∈ R, then there exists an element a ∈ U such
that g(x) = xa for all x ∈ R.

Theorem 2. Let R be a non-commutative prime ring, I a non-zero left ideal of
R and k,m, n, r fixed positive integers. If there exists a generalized derivation
g of R such that [g(xm)xn, xr]k = 0 for all x ∈ I, then there exists a ∈ U such
that g(x) = xa for all x ∈ R except when R ∼= M2(GF (2)) and I[I, I] = 0.

2. Preliminaries

In what follows, unless stated otherwise, R will be a prime ring. The related
object we need to mention is the left Utumi quotient ring U of R (sometimes,
as in [4], U is called the maximal left ring of quotients).

The definitions, the axiomatic formulations and the properties of this quo-
tient ring U can be found in [4].

In any case, when R is a prime ring, all we need about U is that
1) R ⊆ U ;
2) U is a prime ring;
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3) The center of U , denoted by C, is a field which is called the extended
centroid of R.

We also frequently use the theory of generalized polynomial identities and
differential identities (see [4], [10], [12], [20]). In particular we need to recall
the following:

Remark 1 ([6]). If R is a prime ring and I is a non-zero left ideal of R, then
I,RI and UI satisfy the same generalized polynomial identities.

Remark 2 ([10]). Let R be a prime ring, d a nonzero derivation of R and I a
nonzero two-sided ideal of R. Let f(x1, . . . , xn, d(x1), . . . , d(xn)) be a differen-
tial identity in I, that is

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0 for all r1, . . . , rn ∈ I.
Then one of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R,
in the sense that there exists q ∈ Q such that d(x) = [q, x] for all x ∈ R, and I
satisfies the generalized polynomial identity

f(r1, . . . , rn, [q, r1], . . . , [q, rn])
or

2) I satisfies the generalized polynomial identity
f(x1, . . . , xn, y1, . . . , yn).

3. Results

We need the following lemmas.

Lemma 1. Let R = Mt(F ), where F is a field, t ≥ 2 and a, b ∈ R. Suppose
that

(1) [axm+n + [b, xm]xn, xr]k = 0 for all x ∈ R,

where k, m, n, r are fixed positive integers. Then a + b ∈ F .

Proof. Let e be an idempotent element in R. Setting x = e in (1) and multi-
plying left side by (1− e), we see that (1− e)(a + b)e = 0 for any idempotent
element e. Thus a + b is a diagonal matrix. Note that u(a + b)u−1 must be
diagonal for each invertible element u ∈ R, since

[(uau−1)xm+n + [(ubu−1), xm]xn, xr]k = 0

for all x ∈ R. Write a+ b =
∑t

i=1 βieii, where βi ∈ F . Then for each j > 1, we
see that βj − β1, the (1, j)-entry of (1 + e1j)(a + b)(1 + e1j)−1, equals 0. That
is, βj = β1 for j > 1 and hence a + b ∈ F . ¤

Lemma 2. Let R be a non-commutative prime ring and a, b ∈ R such that
[axm+n + [b, xm]xn, xr]k = 0 for all x ∈ R, where k, m, n, r are fixed positive
integers. Then a + b ∈ Z(R).
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Proof. Suppose on the contrary that a + b /∈ C. Then

f(X) = [(a + b)Xm+n −XmbXn, Xr]k
is a nontrivial generalized polynomial identity (GPI) for R. By [6], f(X) is also
a GPI for Q. Denote by F either the algebraic closure of C or C according to
the cases where C is either infinite or finite, respectively. Then, by a standard
argument (e.g., see [19, Proposition]), f(X) is also a GPI for Q ⊗C F . Since
Q ⊗C F is centrally closed prime F -algebra [7, Theorems 2.5 and 3.5], by
replacing R, C with Q ⊗C F, F, respectively we may assume R is centrally
closed and C is either finite or algebraically closed. In view of Martindale’s
theorem [20], R is a primitive ring having a non-zero socle H with C as its
associated division ring.

Since a + b /∈ C, we have [a + b, h] 6= 0 for some h ∈ H. By Litoff’s theorem
[8], there exists an idempotent e ∈ H such that h, ah, ha, hb, bh ∈ eRe. Note
that ef(eXe)e is a GPI for R. Thus, [(eae)Xm+n + [ebe,Xm]Xn, Xr]k is a
GPI for eRe. Since eRe ∼= Ms(C) for some s ≥ 1 then eae + ebe is central in
eRe by Lemma 1. Then there exists c ∈ C such that ce = eae + ebe. Hence
ch = eaeh+ebeh = eah+ebh = ah+bh = (a+b)h. Similarly hc = heae+hebe =
hae+hbe = ehae+ehbe = ha+hb = h(a+b). So [a+b, h] = 0, a contradiction.
Therefore a + b ∈ Z(R). ¤

Corollary 1. Let R be a prime ring and a ∈ R such that [axm, xn]k = 0 for
all x ∈ R, where k, m, n are fixed positive integers. Then a ∈ Z(R).

Proof of Theorem 1. As we have already noted that every generalized deriva-
tion g on a dense left ideal of R can be uniquely extended to U and assumes
the form g(x) = ax + d(x) for some a ∈ U and a derivation d on U . If d = 0,
then [axm+n, xr]k = 0 for all x ∈ R. By Remark 1, U satisfies the above
generalized identity. Moreover, since U remains prime by the primeness of R,
replacing R with U , we may assume that a ∈ R and C is just the center of R.
By Corollary 1, we have a ∈ Z(R). Thus g(x) = ax = xa for all x ∈ R. So we
may assume that d 6= 0.

In the light of Remark 2, we divide the proof into two cases:

Case 1. Let d be the inner derivation induced by the element b ∈ U−C, that
is, the d(x) = [b, x] for all x ∈ U . Then R satisfies the nontrivial generalized
polynomial identity

[axm+n + [b, x
m

]xn, xr]k.

By Remark 1, U satisfies the above generalized polynomial identity. Moreover,
since U remains prime by the primeness of R, replacing R with U , we may
assume that a, b ∈ R and C is just the center of R. Then by Lemma 2, we have
that a+b ∈ Z(R). Therefore g(x) = ax+[b, x] = (a+b)x−xb = x(a+b−b) = xa
for all x ∈ R.

Case 2. Let now d be an outer derivation of U . To continue the proof, we
set G(Y, X) =

∑m−1
i=0 XiY Xm−1−i, a non-commuting polynomial in variables
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X and Y . Note that d(xm) = G(d(x), x). Then R satisfies the following
differential identity

[axm+n + G(d(x), x)xn, xr]k.

Now by Remark 2, R satisfies the identity

[axm+n + G(y, x)xn, xr]k.

Taking y = 0 in the above identity, we get

[axm+n, xr]k = 0 for all x ∈ R.

So we have

[d(xm)xn, xr]k = 0 for all x ∈ R.

Therefore by [17, Theorem 1], we must have d = 0, a contradiction. This proves
the result. ¤

By using almost the same argument in [17], we have the following.

Lemma 3. Let R = Ml(F ), where F is a field, l ≥ 2, and I a minimal left
ideal of R. Suppose [axm+n + [b, xm]xn, xr]k = 0 for all x ∈ I, where m,n, r, k
are fixed positive integers. Then a + b ∈ F except when R ∼= M2(GF (2)).

Proof. Suppose that a + b /∈ F . Since I is a minimal left ideal, it is clear
that we may assume I = Re11. Let e = e2 ∈ I. By the hypothesis, we have
[ae + [b, e]e, e]k = 0. Left multiplying by 1− e, we see that

(2) (1− e)(a + b)e = 0 for all e ∈ I.

Let β ∈ F and x ∈ R. Then f = e + (1 − e)xe and g = e + β(1 − e)xe are
idempotents in I. Set c = a + b, then c /∈ F and (1− e)ce = 0. Thus by (2) we
have (1− f)cf = 0 = (1− g)cg. Therefore we see that

((1− e)− (1− e)xe)c(e + (1− e)xe) = 0

and
((1− e)− β(1− e)xe)c(e + β(1− e)xe) = 0.

Using (2) we arrive at the following equations:

(1− e)cxe− (1− e)xce− (1− e)xec(1− e)xe = 0

and
β(1− e)cxe− β(1− e)xce− β2(1− e)xec(1− e)xe = 0.

Multiplying first equation by β and comparing the last two equations we see
that (β2 − β)(1 − e)xec(1 − e)xe = 0 for all x ∈ R. Then either β ∈ {0, 1} or
ec(1 − e) = 0 for any idempotent e ∈ I. Suppose that the second possibility
holds. In particular, e11c(1 − e11) = 0. Let x ∈ R. Then we have xe11c =
xe11ce11 = µxe11 for some µ ∈ F . Thus we see that I(c−µ) = Re11(c−µ) = 0
for some µ ∈ F . On the other hand, in view of (2) we get [c, e] = 0 for any
idempotent e ∈ I. Then 0 = [c, e] = [c − µ, e] = (c − µ)e for all idempotent
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e ∈ I. Note that e11 + (1− e11)xe11 ∈ I is also an idempotent for every x ∈ R.
Hence (c − µ)(e11 + (1 − e11)xe11) = 0 for all x ∈ R. Since (c − µ)e11 = 0, it
is clear that (c− µ)Re11 = 0. Therefore c = µ ∈ F , a contradiction. Thus we
get F = GF (2).

Now we prove that l = 2. Suppose on the contrary that l > 2. Let i, j be
two distinct positive integers such that 2 ≤ i, j ≤ l. Then e11, e11+ei1, e11+ej1

and e11 + ei1 + ej1 are idempotents in I. In view of (2) we obtain that

ce11 = e11ce11,

c(e11 + ei1) = (e11 + ei1)c(e11 + ei1),

c(e11 + ej1) = (e11 + ej1)c(e11 + ej1)

and

(3) c(e11 + ei1 + ej1) = (e11 + ei1 + ej1)c(e11 + ei1 + ej1).

Using ce11 = e11ce11 and comparing the other equations in (3), we arrive at
ei1cej1+ej1cei1 = 0. Set c =

∑
1≤i,j≤l βijeij , where βij ∈ F . Then this implies

that β1j = 0 = β1i. Hence the second equation in (3) reduces to cei1 = β11ei1,
and so βpi = 0 for p 6= i and βii = β11. Thus we get c = a + b ∈ F , a
contradiction. This proves the lemma. ¤
Lemma 4. Let R be a prime ring, I a non-zero left ideal of R and a ∈ R
such that [axm, xn]k = 0 for all x ∈ I, where k, m, n are fixed positive integers.
Then a ∈ Z(R) except when R ∼= M2(GF (2)) and I[I, I] = 0.

Proof. Assume that [axm, xn]k = 0 for all x ∈ I. Then

[[a, xn]xm, xn]k = [axm, xn]k+1 = 0

for all x ∈ I. Now by [17, Lemma 3] we have a ∈ Z(R) except when R ∼=
M2(GF (2)) and I[I, I] = 0. ¤
Lemma 5. Let R be a non-commutative prime ring and I a non-zero left ideal
and a, b ∈ R such that

(4) [axm+n + [b, xm]xn, xr]k = 0 for all x ∈ I,

where k, m, n, r are fixed positive integers. Then a + b ∈ Z(R) except when
R ∼= M2(GF (2)) and I[I, I] = 0.

Proof. Assume that a + b /∈ C. If I(b − β) = 0 for some β ∈ C, then setting
b′ = b− β we have Ib′ = 0. Moreover by (4) it is clear that

[axm+n + [b′, xm]xn, xr]k = 0 for all x ∈ I.

Thus we get

(5) [(a + b′)xm+n, xr]k = 0 for all x ∈ I.

By Remark 1, [(a + b′)xm+n, xr]k = 0 for all x ∈ UI. Moreover UIb
′

= 0 if
and only if Ib

′
= 0. Now I and UI satisfy the same basic conditions. Hence
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replacing R, I with U , UI, respectively, we may assume that a, b′ ∈ R and
C is just the center of R. Thus we get the conclusion R ∼= M2(GF (2)) and
I[I, I] = 0 since a + b′ /∈ C.

So we may assume that I(b − β) 6= 0 for all β ∈ C. Hence, in view of [14,
Lemma 3], either R is a PI-ring or there exists an element u ∈ I such that ub
and u are C-independent. For the latter case,

[a(Xu)m+n + [b, (Xu)m](Xu)n, (Xu)r]k

is a non-trivial GPI for R.
On the other hand we have [axm+n + [b, xm]xn, xr]k = 0 for all x ∈ QI by

[6]. Thus applying the same argument in Lemma 2 and replacing I by QI,
we may assume that R is a centrally closed prime ring having a non-zero socle
H, with C as its associated division ring and I = IC. Moreover C is either
algebraically closed or finite. If R contains no non-trivial idempotents, then R
is a division ring and I = R. Then by the proof of Theorem 1 we obtain that
a + b ∈ C, a contradiction. So we may assume that R contains a non-trivial
idempotent. On the other hand we have

- I[I, I] = 0 if and only if HI[HI,HI] = 0 by [6],
- I(b− µ) = 0 if and only if HI(b− µ) = 0 for some µ ∈ C.
So replacing I by HI we may assume I ⊆ H. Suppose first that I[I, I] 6= 0.

Then I always contains an idempotent with rank 2 or greater that 2. Let e be
such an idempotent in I.

Now choose x as exe in (4), then

[a(exe)m+n + [b, (exe)m](exe)n, (exe)r]k = 0 for all x ∈ R,

and left-side multiplying by e yields

[(eae)(exe)m+n + [ebe, (exe)m](exe)n, (exe)r]k = 0 for all x ∈ R.

But eRe ∼= Ml(C), where l = rank(e) ≥ 2. By Lemma 2 we have e(a+b)e ∈ Ce.
Choosing x = e in (4), we get (a + b)e− e(a + b)e = 0. Then ae + be ∈ Ce for
every idempotent e ∈ I with rank(e) ≥ 2. Note that e+(1−e)xe ∈ I is also an
idempotent for all x ∈ R and rank(e + (1− e)xe) = rank(e) ≥ 2. Set c = a + b,
so ce ∈ Ce for all idempotent e ∈ I with rank(e) ≥ 2. In particular we have

c(e + (1− e)xe) ∈ C(e + (1− e)xe)

for all x ∈ R. Left-side multiplying by e yields that

ece + ecxe− ecexe ∈ Ce.

Since ece = ce ∈ Ce, we get [e, c]xe ∈ Ce for all x ∈ R. Suppose for the moment
that [e, c] 6= 0. Choose x0 ∈ R such that [e, c]x0e = βe 6= 0 for some β ∈ C.
Then we have βexe = [e, c]x0exe ∈ Ce. Therefore eRe = Ce, because β 6= 0.
But eRe = Ce implies that rank(e) = 1, a contradiction. Hence [e, c] = 0. Now
since I is completely reducible left H-module, each element of I is contained
in Hf for some f2 = f ∈ I with rank(f) ≥ 2. But fc = cf ∈ Cf .
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Let x ∈ I. Then x = hf for some h ∈ H. We see that xc = hfc ∈ Chf =
Cx, and so [xc, x] = 0 for all x ∈ I. Linearizing this last equation, we get

(6) [xc, y] + [yc, x] = 0 for all x, y ∈ I.

Replacing y = e in (6) and using the fact that [e, c] = 0, we obtain

0 = [xc, e] + [ec, x] = e[c, x] for all x ∈ I.

Hence we have 0 = e[c, xy] = ex[c, y] for all x, y ∈ I. Therefore we get
eRI[c, I] = (0), and so I[c, I] = 0. In particular, [x[c, x], x] = 0 for all x ∈ I.
So in view of [17, Lemma 3(ii)] one obtains I(c − λ) = 0 for some λ ∈ C.
Let x ∈ R, then it is clear that f = e + (1 − e)xe ∈ I is an idempotent with
rank(f) = rank(e) ≥ 2. Since [c, e] = 0 for all e = e2 ∈ I with rank(e) ≥ 2, in
particular we have

[c− λ, e + (1− e)xe] = 0 for all x ∈ R.

Hence we get (c − λ)e + (c − λ)(1 − e)xe = 0. On the other hand we have
(c− λ)e = [c− λ, e] = 0. So (c− λ)xe = 0 for all x ∈ R. Thus the primeness of
R implies that c = λ ∈ C, and hence a + b = c ∈ Z(R), a contradiction. This
proves that I[I, I] = 0.

If now H ∼= Ml(C) for some l ≥ 2, then in view of Lemma 3, we are done.
Thus we may assume H � Ml(C) for all l ≥ 2. Since c /∈ C, it is clear that
ch 6= hc for some h ∈ I. It follows from Litoff’s theorem [8] that there exists
e = e2 ∈ H, rank(e) ≥ 3, such that ch, hc, h ∈ eHe. Note that ece /∈ Ce.
Indeed, if ece ∈ Ce, then eceh = hece, and hence ch = hc, a contradiction.
On the other hand, 0 6= h ∈ I ∩ eRe. Since R is centrally closed, IC = I and
I[I, I] = 0, it is clear that I is a minimal left ideal of R by [5, Lemma 5.1]. We
also have that I ∩ eRe is still a minimal left ideal of eRe and eRe ∼= Ml(C),
where l = rank(e) ≥ 3. Indeed, if J is a left ideal of eRe such that J $ I ∩eRe,
then RJ $ RI $ I. Using the fact that RJ is a left ideal of R such that
RJ $ I and I is a minimal ideal of R, we get RJ = 0. Hence J = 0 by the
primeness of R. Now by the hypothesis, we have

[(eae)(exe)m+n + [ebe, (exe)m](exe)n, (exe)r]k = 0 for all x ∈ R,

and so
[(eae)xm+n + [ebe, xm]xn, xr]k = 0 for all x ∈ I ∩ eRe.

In view of Lemma 3 this yields that eRe ∼= M2(GF (2)), a contradiction. This
proves the result. ¤
Example 1. Let R = Ms(F ), s > 1, the s × s matrices over a field F and
I = Re11. If we set a = 1− es1 and b = es1, then [axm+n + [b, xm]xn, xr]k = 0
for all x ∈ I, where k,m, n, r are fixed positive integers and a + b ∈ Z(R).

Proof of Theorem 2. As we have already noted that every generalized deriva-
tion g on a dense left ideal of R can be uniquely extended to U , we may assume
that g has the form g(x) = ax + d(x) for some a ∈ U and a derivation d on U .
If d = 0, then [axm+n, xr]k = 0 for all x ∈ I. Then by Lemma 4 we have a ∈ C
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except when R ∼= M2(GF (2)) and I[I, I] = 0. If a ∈ C, then g(x) = ax = xa
for all x ∈ R. So we may assume that d 6= 0.

In the light of Remark 2, we divide the proof into two cases:

Case 1. Let d be the inner derivation induced by the element b ∈ U − C,
that is, d(x) = [b, x] for all x ∈ U . Then I satisfies the nontrivial generalized
polynomial identity

[aXm+n + [b,Xm]Xn, Xr]k.

By Remark 1, RI satisfies the above generalized identity. Since by [4], R and U
satisfy the same GPIs, we have that UI satisfies above identity. Then applying
Lemma 5 to UI, we have that a + b ∈ C except when U ∼= M2(GF (2)) and
UI[UI, UI] = 0. Moreover as in the proof of Lemma 5 we may replace R, I by
U,UI, respectively. Then in particular, a+b ∈ C except when R ∼= M2(GF (2))
and I[I, I] = 0. If a + b ∈ C, then g(x) = ax + [b, x] = (a + b)x − xb =
x(a + b− b) = xa for all x ∈ R.

Case 2. Let now d be an outer derivation of U . To continue the proof we
set G(Y, X) =

∑m−1
i=0 XiY Xm−1−i, a non-commuting polynomial in variables

X and Y . Note that d(xm) = G(d(x), x). Since

[axm+n + G(d(x), x)xn, xr]k.

is an identity for I, then for any u ∈ I − C

[a(xu)m+n + G(d(xu), xu)(xu)n, (xu)r]k
is an identity for R. Thus R satisfies the following

[a(xu)m+n + G(d(x)u + xd(u), xu)(xu)n, (xu)r]k.

From Remark 2, since d is an outer derivation R satisfies the following identity

(7) [a(xu)m+n + G(yu + xd(u), xu)(xu)n, (xu)r]k.

Taking y = 0 in (7) we get

(8) [a(xu)m+n + G(xd(u), xu)(xu)n, (xu)r]k = 0.

By the linearity of g(Y,X) on Y , subtracting equation (7) from (8) yields that
R satisfies

[G(yu, xu)(xu)n, (xu)r]k = 0,

which means that R satisfies

0 =


 ∑

i+j=m−1

(xu)i(yu)(xu)j+n, (xu)r




k

(9)

=
∑

i+j=m−1

(xu)i[(yu), (xu)r]k(xu)j+n.

Clearly (9) is a nontrivial GPI for R, since u /∈ C. So RC is a primitive ring
with a non-zero socle H ([20]). J = HI is a non-zero left ideal of H. Note that
H is simple, J = HJ and J satisfies the same basic conditions as I ([12]). Now
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replace R by H and I by J , then, without loss of generality, R is simple and
equal to its own socle and RI = I. Let e2 = e be some non-trivial idempotent
in I. So for all x, y ∈ R, we have

∑

i+j=m−1

(xe)i[(ye), (xe)r]k(xe)j+n = 0

and choosing y = (1− e)r ∈ R we get

(1− e)(re)(xe)kr+m+n−1 = 0.

This leads to the contradiction that either e = 0 or e = 1. Thus any idempotent
element of I is trivial, that is, I = R. Therefore we have to consider the
condition ∑

i+j=m−1

xi[y, xr]kxj+n = 0

for all x, y ∈ R, which is a polynomial identity. From Lemma 2 in [11], it
follows that there exists a suitable field F such that R ⊆ Ms(F ), the ring of
all s × s matrices over F , and moreover Ms(F ) satisfies the same polynomial
identity of R. In particular Ms(F ) satisfies

(10)
∑

i+j=m−1

xi[y, xr]kxj+n = 0.

Suppose s ≥ 2 and choose x = e11 and y = e21 in (10). Then we have e21 = 0.
Thus s = 1 and R is commutative, a contradiction. ¤

The following example shows our results do not hold in semiprime rings:

Example 2. Let F be any field. Consider the semiprime ring

R =




GF (2) GF (2) 0
GF (2) GF (2) 0

0 0 F


 .

Let

I =




GF (2) 0 0
GF (2) 0 0

0 0 F




be the left ideal of R. If a =
(

1 1 0
0 0 0
0 0 1

)
and b =

(
0 0 0
0 0 0
0 0 α

)
for α ∈ F fixed, one can

easily see that [ax2 + [b, x]x, x] = 0 for all x ∈ I, since uv(u + v) = 0 for all
u, v ∈ GF (2). Then g(x) = ax+[b, x] = (a+b)x−xb is a generalized derivation
such that [g(x)x, x] = 0 for all x ∈ I. But

a + b /∈ C =








λ 0 0
0 λ 0
0 0 µ


 | λ ∈ GF (2), µ ∈ F



 .
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Nurcan Argaç
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