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SIMPLE VALUATION IDEALS OF ORDER TWO
IN 2-DIMENSIONAL REGULAR LOCAL RINGS

JoovyouN HonG, HEISOOK LEE, AND SUNSOOK NOH

ABSTRACT. Let (R,m) be a 2-dimensional regular local ring with
algebraically closed residue field R/m. Let K be the quotient field
of R and v be a prime divisor of R, i.e., a valuation of K which
is birationally dominating R and residually transcendental over R.
Zariski showed that there are finitely many simple v-ideals m =
Py D P, D -+ D P, = P and all the other v-ideals are uniquely
factored into a product of those simple ones. It then was also shown
by Lipman that the predecessor of the smallest simple v-ideal P is
either simple (P is free) or the product of two simple v-ideals (P is
satellite), that the sequence of v-ideals between the maximal ideal
and the smallest simple v-ideal P is saturated, and that the v-value
of the maximal ideal is the m-adic order of P. Let m = (z,y) and
denote the v-value difference |v(z) — v(y)| by n,. In this paper, if
the m-adic order of P is 2, we show that o(P;) = 1 for 1 < ¢ < [2]
and o(P;) = 2 for [b+731 < i < t, where b = n,. We also show that
Ty = N, when w is the prime divisor associated to a simple v-ideal
Q@ D P of order 2 and that w(R) = v(R) as well.

1. Backgrounds

Let (R,m) be a 2-dimensional regular local ring with algebraically
closed residue field R/m. Let K denote the quotient field of R. If v
is a valuation of K dominating R with the valuation ring (V,n), then
tr.degp/m V/n < 1. If the residual transcendence degree is 0 (1, respec-
tively), then v is called a O-dimensional (1-dimensional, respectively)
valuation. We call v a prime divisor of R if it is a 1-dimensional valua-
tion. For a detailed background we refer to [3], [6], and [14].

Let v be a prime divisor of R and (V,n) be the associated valuation
ring of v, i.e.,, K DV D Rand nN R =m. Since v : K — Z then is
a discrete rank one valuation, the image v(V') is the set of nonnegative
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integers N U {0} = {0,1,2,...} (cf. [1, Theorem 1], [12]). For an ideal
I of R, v(I) = min{v(a)|a € I} is a nonnegative integer and I is called
av-ideal if IVNR =1, ie.,if I = {r € Rjv(r) > v(I)}. The following
sequence of contractions of the powers of the maximal ideals of V

forms an infinite descending sequence of v-ideals in R :
(1) mzloDllDIQD"'DIjDI]‘_HD """"

For each j, I; = {r € R|v(r) > v(I;)} is the j** largest v-ideal in R. For
a consecutive pair I; D I;41 of v-ideals, I; is called the v-predecessor of
Ij;1 and Iy is called the v-successor of I;.

The set of nonnegative integers v(R) = {v(r)|r € R} C NU{0} is
called the value semigroup of v on R which consists of the following
nonnegative integers:

(2) O<rp<ri<rog << rren- <7y <Tjpr <eevee ,

where r; = v([;) for all j > 0. The value semigroup v(R) is known
to be symmetric {7, Theorem 1], i.e., there exists some integer z such
that a € v(R) if and only if z — a & v(R) for every integer a € Z. The
conductor element of v(R) is the smallest ingeger ¢ such that c—1 & v(R)
but ¢+ j € v(R) for all j > 0. The corresponding ideal C' of v-value c is
called the conductor ideal of v.

In [14], Zariski showed that there are only finitely many simple v-
ideals P/s among infinite v-ideals I ;s as follows:

(3) PhbOPLDP, D v O P

and that any other v-ideal I; can be uniquely factored into a product of
simple v-ideals I; = [T._, P/ Tt is clear that m = Py and let us denote
the smallest simple v-ideal F; by P. The number ¢ of nonmaximal simple
v-ideals is defined to be the rank of v, or the rank of P which is the
smallest simple v-ideal. For such valuation v of K, there is a unique
quadratic sequence of 2-dimensional regular local rings in K:

(4) R=RyCRiCRyC------ CRi=SCK

in which the transform of P; in R; becomes the maximal ideal m; for
each 0 < 7 < t and v is the m;-adic order valuation. If v; denotes the
my-adic order valuation of K, then P; is the smallest simple v;-ideal in
R for each i ([14, Theorem (F), p.392]). The conductor ideal C of v is
also called the adjoint ideal of the smallest simple v-ideal P ([5)).



Simple valuation ideals of order two in 2-dimensional regular local rings 429

Combining notations of v-ideals in two sequences (1) and (3), we
rewrite the sequence (1) with the conductor ideal C in it:

B)ym=PDO>PD--DCD--- DI 1DP=P=I;2I4;D---.

It is known that the above sequence is saturated from m to P, i.e.,
MI;/Ij41) = 1 for 0 < j < s—1 [8, Lipman, Theorem A.2], and hence
s = A(R/P) — 1 since k is algebraically closed. The length between any
two consecutive v-ideals I; D Ij1; for j > s can be measured in terms
of the largest integer v € N such that I”|I; (8, Theorem 3.1}).

For a simple v-ideal J D P with the associated prime divisor w, the
sequence of w-ideals containing J coincides with that of v-ideals [8, Lip-
man, Theorem A.2]. For two regular local rings T C S in K, S is said to
be proximate to T' (denoted by S > T') if the m(T")-adic order valuation
ring contains S ([6, (1.3)]). In the sequence (5), the v-predecessor I;_; is
the unique integrally closed ideal adjacent to P from above [6, Theorem
4.11], [9, Theorem 3.1]. It was also known that I,_; is the product of
simple v-ideals P/s associated to Rjs to which Ry is proximate, and that
there are at most two such quadratic transformations R.s {6, Theorem
4.11]. One of them is R;_1 since R; is a first quadratic transformation
of R;_1. Hence we have either I;_; = Py or I;_; = FP,_1 FP; for some
0 < i <t—2 when R/m is algebraically closed. The simple v-ideal
P is said to be free for the former and satellite for the latter. Note
that Lipman showed this result without the assumption R/m being al-
gebraically closed [6]. We refer [2] for the proximity relations between
valuation ideals for 0—dimensional valuation case.

For an ideal L of R, the (m-adic) order o(L) of L is defined to be
the integer r such that L € m™\m™!. Let us assume P is a simple
integrally closed ideal associated to a prime divisor v, o(P) =r > 1 and
rank(P) =t > 0. Let us denote the number of simple v-ideals of order %
by n; for 1 <4 < r = o(P) among t nonmaximal simple v-ideals in the
following sequence:

PgDPlDPQD"'DRt_lDPtZP.

We are interested in finding the satellite simple v-ideals, i.e., simple
v-ideal P; whose v-predecessor is not simple.
Let o(P) =1. If t =0, then P = m and hence n; =t =0, and

mom2omPomio. ...

is the sequence of all the v-ideals. If we further assume o(P) = 1 and
t > 0, it is easy to see that n; = ¢, the nonmaximal simple v-ideals of
order 1 are free, and they form the saturated sequence of all the v-ideals
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from m to P. The complete sequence of v-ideals was described in detail
for o(P) =1 case [10].

Let o(P) = 2. Any simple v-ideal P; is of order one or two in the
above sequence (3). If P is free, then o(P;—1) = 2 and if P is satellite,
then o(P;—1) = 1 and therefore o(P;) = 1 for all i < t — 2 as well.
Therefore, there exists some ¢ such that o(P) = 1 and o(Ppy1) = 2.
In this paper we find such ¢ in terms of the v-value difference n, of a
regular system of parameters z, y when o(P) = 2. The results were
stated without a proof and used to describe the complete sequence (5)
of v-ideals in [11].

Throughout the paper, we assume m = (z,y), o(P) = 2, rank(P) =
t>2 vy =2 v(x) =2+bforb >1,ie, n, = b We show that
there are n; = [%1] simple nonmaximal v-ideals of order 1 and hence
there are np =t — {b“} simple v-ideals of order 2. It is also shown
that P[-bJ:_'I is the only satellite simple v-ideal and that C = P{b 1 is
the conductor ideal of v. The v-predecessor of P[ by3 is then obtamed
as Pl—b21~| [b;ﬂ =C- P[b—;l-l, ie. P[_.%._] is proximate to two previous
simple v-ideals C = P[b;_w and Pf%?' For any other simple v-ideal
Q@ of order 2 which is associated to the prime divisor w, we show that
Ny = Ny as well as w(R) = v(R).

2. Simple valuation ideals of order two

Throughout this section, we assume that v is a prime divisor of a
2-dimensional regular local ring R, P is the associated simple integrally
closed ideal of v, o(P) = 2, rank(P) = ¢t for t > 2. Let us assume that
m = (z,y) and denote |v(z) — v(y)| by n,. Note that v(m) = o(P) = 2
by reciprocity (6, Corollary (4.8)].

Let us assume v(y) < v(z). Since P then is contracted from a first
quadratic transformation R; = R[%—] ~ for some maximal ideal N of
R[] such that m(V) N R[%] = N. Therefore v(z) > v(y) and v(z) =
2 + n, for some n, > 1.

Let us denote n, by b. In either b = 2k even case for £k > 1 or
b = 2k + 1 odd case for k > 0, we have [%52] = k, 1] = k + 1,
[43] = k + 2. With this invariant & for given prime divisor v, we
describe the sequence of simple v-ideals from m to P,
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Since o(P) = 2, t = n1 + ng, i.e., there are n; nonmaximal simple
v-ideals of order 1 and the rest are the ones of order 2 in the sequence:

m=POPLD - DPy DPy41D---DP=P

We use the invariant n, to determine these number n; and hence ng =
t —ny as well.

THEOREM 2.1. Let (R,m,k) be a 2-dimensional regular local ring
with algebraically closed residue field k. Let P be a simple integrally
closed ideal of R which is associated to the prime divisor v. Let o(P) = 2,
ny = b and rank(P) = t. Let n; be the number of nonmaximal simple
v-ideals of order i for i = 1,2. Then, ny = [%£1] and ny = ¢ — [%1].

PROOF. Let us assume that m = (z,y), v(y) =2, and v(z) =2 +b
for b > 1.

If b = 1, then m? is a v-ideal [8, Theorem 1.2]. Hence P, = (z,y?)
is the only nonmaximal simple v-ideal of order 1 and P> = (z?%, zy?, y%)
is the simple v-ideal of order 2 and rank 2. Therefore, among simple
v-ideals

mDODPLDP, D - ODF =P

there exists only one nonmaximal simple v-ideal, i.e., ny =1 = fb;—W
and therefore ng =t — 1=t —[%1] fort >2and b= 1.

Assume b > 2.

Case 1: bis even(b=2k , k > 1).

In this case,

P = (m’yz) D P = ($,y3) 20000 Pk = (xayk+1)

is the sequence of saturated v—ideals of v-values 4,6,...,2k + 2 such
that v(Pg) = v(z) = v(y**1) = 2k + 2 for k > 1. Since A(Py/mPy) = 2,
v(mPy) = 2k + 4, and Py D Iy41 D mPg, we have that Iy = (z -
ayktl y*+2) is also simple for some o # 0 € R/m, ie., Iy41 = Pri1.
Note that Iy o = mPy since v(Pyy1) = 2k + 3, v(mPy) = 2k + 4, and
Iiy1 D Ixyo are adjacent. Therefore, Ixyo = mPy is the largest v-ideal
of order 2 and hence n; =k + 1 = [%2] and ny = ¢ — e8],

Case 2: bisodd(b=2k+ 1,k >1).

In this case,

P =(z,4>) > P = (2,4°) D - D Py = (z,4""") D Pegy = (z,0)
is the saturated sequence of v-ideals of v-values 4,6, ...,2k + 2,2k + 3.
Therefore, I; = P; for 1 <4 < k + 1. Since AM(Py/mPy) = o(FPx) +1=2
(cf. [3, 4]) and v(mPy) = 2k + 4, Iy12 = mPy is the v-ideal adjacent to
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Py, ie., mPy is the largest v-ideal of order 2. Since A(Pgy1/mPri1) =
2 and v(mPyxyq) = 2k + 5, Iyr3 = mPyy; is the v-successor of Iyio =
mP,. Therefore,

mDOP, DD Py DmPy, DmPryy

are all the v-ideals from m to m Py, and therefore ny = k+1 = [3’9%2] =
(%17 and no = ¢ — [2£L].
In both cases, o(P;) = 2 for [%£2] < i < ¢, ie, [%2] is the largest

simple v-ideal of order 2 and among the simple v-ideals from m to P,

m>DP DD FPrs—17 D Prysin D Progs1 DD P =P
=1 [#51 [%=1

we see that o(P;) =1 for i < {"—;H and o(F;) = 2 for i > berTg] U

The conductor ideal of v(or the adjoint ideal of the associated simple
v-ideal P) is the v-ideal C such that for any successive v-ideals J > J'
such that C > J D J', v(J') = v(J) + 1 and it is known that C = L :m
for the largest v-ideal L of order o(P) [5, Theorem 2.2]. Using this and
Theorem 2.1, we now obtain the conductor ideal of v in our case.

COROLLARY 2.2. Let P, v, b=n,, t be as in Theorem 2.1. Then
(i) The largest v-ideal of order 2 is mP[b_Tl 1

(ii) The conductor ideal of v is C' = P[b_;l],

(i) P; is satellite if and only if i = [HT?’],

(iv) P[%] is proximate to Pl—bg_l-] and P(b;_l].

PROOF. Note that [252] = k+2, [2$2] = k+1, [%52] = & for either
b =2k even or b= 2k + 1 odd.

(i)—(it) Let b = 2k for k > 1 or b = 2k + 1 for k > 0. In either case,
P, = (x,y**1) by Theorem 2.1. Consider

P[b;_1] =P, D Pl-%i] = Pry1 D mPy D mPyy; O Pigo.

Note that P, = I and Pxy1 = Ip41 such that v(Pg) = 2k 4+ 2 and
v(Pyy1) = 2k + 3. Since 2 € v(R), v(Ik+2) = 2k +4. Hence mPy, C Iii2
since v(mPy) = 2 + (2k + 2). However, u(Py) = o(FP) + 1 implies that
mPy is a v-ideal, too. Therefore, mPy = Iy,o is the largest v-ideal of
order 2, hence C = mPy : m = Py, i.e., Py is the conductor ideal of v by
(5, Theorem 2.2].

(iii)—(iv) Since o(Pg+1) = 1 and o(Pxy2) = 2, they are not adjacent
since Pgyo is simple. Therefore Py.g is satellite and o(P;) = 2 for all
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k+2 < j<t,ie., simple v-ideals of order 2 other than P2 are free.
Since

mDODP D DP,=CD Py

is the set of all v-ideals of order 1 for either b = 2k or b = 2k+1, they are
all free. Since A\(Py/Py+1) = 1 and u(Py) = 2, therefore Pyy D mFy are
adjacent. Since v(Pyy1) = 2k + 3 and v(mPy) = 2k + 4, Pgi1 D Iyt2 2
mPy, where I.o is the v-successor of Pyy1. Therefore, Iy = mP.
Similarly, mPy D Iyr3 2 mPygyq since v(mPyy1) = 2+ (2k + 3). But,
A(mPy/mPyy1) = 1 implies that I3 = mPg41. Since v(P Py =4+
2k+2=2k+6, Iy, 4 2 P Py. Since U(P1Pk+1) =2k+7, Ix15 D PPy
Now we claim that A(PyPy/P1Pr1) = 1, e, PLPy D P1FPyy are
adjacent. For 1 < i <k, let v; be the prime divisor associated to F; and
consider two ideals P; P, D P;Py1. By intersection multiplicity, we have
)\(BPk/PiP]H_l) = )\(Pk:/Pk+1) +Ui(Pk+1) —’Ui(Pk) = 1 since Pk+1 is not
a vi-ideal [8, Remark 2.2] while Py O Pgy1 are adjacent. Therefore we
have that P;P, D PPy, are adjacent for 1 <i < k. If i = 1, we have

Ik+2 =mPy D Ik+3 =mPgi1 D Ix4a D PP, D P1Pk+1.

We then have A\(mPy/P1Py) = A(m/P1) + vk (P1) —vg(m) = 1+ (2 —
1) = 2 since Py is a simple integrally closed ideal of order 1 and P is
also a vg-ideal. Since A(I;/I;41) = 1 for any v-ideals containing P by 8,
Theorem A.2], therefore we see that Iy = P1P; and Ixi5 = PiPeya
by comparing the lengths.

We similarly can show that

Pk+1 >mPy D mPk+1 > PP, D P1Pk+1 Do D PP, D PkPk+1

is a saturated sequence of v—ideals contained in Pyyq. Since this is
saturated and none of them other than Py,; are simple, we see that
PyPii1 D Pyyo. Since o(Pgy2) = 2 and o(Pyy1) = 1, Pyyo is satellite,
hence proximate to P41 and P; for some 0 <1 < k, i.e., Ppy1P D Peyo
are adjacent for some 0 < i < k. Therefore, the v-predecessor of Pg,2 is
Py, 1P, from the containments as in the following sequence:

PiPoy1 D PaPiy1 D -+ D Pe1Pii1 D PuPrt1 O Pryo.
Since o( P;) = 2, all the other simple v-ideals
Pri2a D PeygDoveee D F

are saturated and hence P; is free for k +3 < i <t and forall 1 <¢ <
k + 1 as well. Note that ¢ = rank(P) > k+2 = [%1 from the above
construction. O
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We showed that Py is the conductor ideal of v, Py is the smallest
v-ideal of order 1, mP;, is the largest v-ideal of order 2, Py is the only
satellite simple v-ideal which is adjacent to Pgxy1 Py, and the rank of P
is at least k¥ + 2. Among the simple v-ideals of v, we also showed that
ofP;))=1for1<i<k+1lando(P) =2for k+2<i<t Letuy
denote the prime divisor associated to P; for each 1 < i < ¢.

If i <k+1,1ie., o(P) =1, then the complete sequence of v;-ideals
was obtained in [10].

Ki>k+2,

m:)PlD ...... 3Pk+13Pk+2D ...... DPi

is the sequence of all simple v;-ideals as well. Furthermore, the sequence
of all v;-ideals from m to P; coincides with the sequence of v-ideals from
m to P; by (8, Lipman, Theorem A.2]. It is known that if J D I are
adjacent simple integrally closed ideal associated to the prime divisors
w and v respectively, then o(J) = o(I) and w(R) = v(R) [7, Theorem
2]. Now we further compare w(z) to v(z), w(y) to v(y), and by, to n, if
w is the associated prime divisor of P, for k 4+ 2 < < t.

COROLLARY 2.3. Let P, v, b = ny, t be as in Theorem 2.1. Let w = v;
be the prime divisor associated to the simple v-ideal P; for k+2 <1 < t.
Then, w(y) = v(y), Ny = Ny, and w(R) = v(R).

PROOF. By the previous theorem and corollary, we have o(FP;) = 2
for k+2 <4i <t Nowlet us denote v; = w, P, =Q for k+2<i <t
and n, = b. Since o(P) = 2, we have ¢t > 2. Since Py41 D -+ D B, are
saturated simple v-ideals of order 2, we see that w(R) = v(R) by using
[7, Theorem 2] inductively.

Let R=Ry C Ry C--- CR; C- - C Ry be the quadratic sequence
along v. Since o(Q) = w(m) =2,¢t > 2,and R; = R[%](iy) is dominated
by R:, we have w(y) = w(m) = 2 < w(z) = 2+ b; for some b; > 0, where
bi = Ny, = Ny

If b = 1, then m? is a v-ideal since [%] = 2 [8, Theorem 1.2]. Since
m? D @, m? is also a w-ideal [8, Theorem A.2]. Therefore, [4:1= [%] =
2, hence b; =1 =b.

Assume b > 2. Then, m? is not a v-ideal and hence is not a w-ideal
since m? D Q D P. Since Q is a w-ideal as well as a v-ideal, the sequence
of v-ideals from m to @Q in the following sequence

m>PLD-- .- DP.DFPy1OomPy D
ODFPy2D---DF=QD>---DRh=P

is also the sequence of w-ideals from m to @ [8, Theorem A.2].
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Case 1: bis even(b =2k, k > 1).
In this case, we have the following containments:

P11 = (2,4%) D Po = (2,4) O Pupa
=(@—-o ") OmP, D> D P =Q

for some a # 0 in R/m by Theorem 2.1. Since y* € Py_1\Py and z € P
imply that w(z) > w(y*) = 2k and hence w(P;) = min{w(z), 2k + 2} is
either 2k + 1 or 2k + 2. Suppose w(z) = 2k + 1, i.e., b; = 2k — 1. Then
w(P;) = 2k + 1 and w(Pgy1) = 2k + 2 since 2 € w(R). Then, y*+! ¢
P11 since w(y**!) = 2k + 2, contradiction. Therefore, w(z) > 2k + 2.
Suppose w(z) > 2k + 3. Then w(Py) = 2k + 2. Since w(z) > 2k + 3 and
P41 is the successive w-ideal of Py, we see that z € Py, contradiction.
Therefore, w(z) = 2k + 2 = b+ 2 and hence n,, = ny,.

Case 2: bisodd(b=2k+1, k > 1).

In this case, we easily obtain P, = (z,y**!) and Pyyy = (z,y*1?). If
w(z) = 2k+2, then w(Py41) = w(Py), contradiction. Therefore, w(z) >
2k + 2 and hence w(Py4+1) = min{w(z),2k + 4} is either 2k + 3 or
2k + 4. Since mP; is also a w-ideal of order 2, x & mP; implies that
w(z) < w(mPy) = 2k + 4. Therefore, w(z) = 2k + 3 = 2 + b, hence
Ty = Ty as well. O
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