SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

JOOYOUN HONG, HEISOOK LEE, AND SUNSOOK NOH

ABSTRACT. Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals m = $P_0 \supset P_1 \supset \cdots \supset P_t = P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P issatellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m=(x,y) and denote the v-value difference |v(x)-v(y)| by n_v . In this paper, if the m-adic order of P is 2, we show that $o(P_i) = 1$ for $1 \le i \le \lceil \frac{b+1}{2} \rceil$ and $o(P_i) = 2$ for $\lceil \frac{b+3}{2} \rceil \le i \le t$, where $b = n_v$. We also show that $n_w = n_v$ when w is the prime divisor associated to a simple v-ideal $Q \supset P$ of order 2 and that w(R) = v(R) as well.

1. Backgrounds

Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K denote the quotient field of R. If v is a valuation of K dominating R with the valuation ring (V, n), then tr. $\deg_{R/m} V/n \leq 1$. If the residual transcendence degree is 0 (1, respectively), then v is called a 0-dimensional (1-dimensional, respectively) valuation. We call v a prime divisor of R if it is a 1-dimensional valuation. For a detailed background we refer to [3], [6], and [14].

Let v be a prime divisor of R and (V, n) be the associated valuation ring of v, i.e., $K \supset V \supset R$ and $n \cap R = m$. Since $v : K \to \mathbf{Z}$ then is a discrete rank one valuation, the image v(V) is the set of nonnegative

Received November 1, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 13A18, 13H05, 13B02, 13B22.

Key words and phrases: simple valuation ideal, order of an ideal, prime divisor.

integers $\mathbb{N} \cup \{0\} = \{0, 1, 2, \ldots\}$ (cf. [1, Theorem 1], [12]). For an ideal I of R, $v(I) = \min\{v(a) | a \in I\}$ is a nonnegative integer and I is called a v-ideal if $IV \cap R = I$, i.e., if $I = \{r \in R | v(r) \geq v(I)\}$. The following sequence of contractions of the powers of the maximal ideals of V

$$n \cap R = m \supset n^2 \cap R \supset \cdots \supset n^i \cap R \supset \cdots$$

forms an infinite descending sequence of v-ideals in R:

$$(1) m = I_0 \supset I_1 \supset I_2 \supset \cdots \supset I_j \supset I_{j+1} \supset \cdots$$

For each j, $I_j = \{r \in R | v(r) \geq v(I_j)\}$ is the j^{th} largest v-ideal in R. For a consecutive pair $I_j \supset I_{j+1}$ of v-ideals, I_j is called the v-predecessor of I_{j+1} and I_{j+1} is called the v-successor of I_j .

The set of nonnegative integers $v(R) = \{v(r)|r \in R\} \subseteq \mathbb{N} \cup \{0\}$ is called the value semigroup of v on R which consists of the following nonnegative integers:

$$(2) 0 < r_0 < r_1 < r_2 < \cdots < r_j < r_{j+1} < \cdots ,$$

where $r_j = v(I_j)$ for all $j \geq 0$. The value semigroup v(R) is known to be symmetric [7, Theorem 1], i.e., there exists some integer z such that $a \in v(R)$ if and only if $z - a \notin v(R)$ for every integer $a \in \mathbf{Z}$. The conductor element of v(R) is the smallest ingeger c such that $c-1 \notin v(R)$ but $c+j \in v(R)$ for all $j \geq 0$. The corresponding ideal C of v-value c is called the conductor ideal of v.

In [14], Zariski showed that there are only finitely many simple v-ideals P'_is among infinite v-ideals I'_is as follows:

$$(3) P_0 \supset P_1 \supset P_2 \supset \cdots \supset P_t$$

and that any other v-ideal I_j can be uniquely factored into a product of simple v-ideals $I_j = \prod_{i=0}^t P_i^{a_i}$. It is clear that $m = P_0$ and let us denote the smallest simple v-ideal P_t by P. The number t of nonmaximal simple v-ideals is defined to be the rank of v, or the rank of P which is the smallest simple v-ideal. For such valuation v of K, there is a unique quadratic sequence of 2-dimensional regular local rings in K:

$$(4) R = R_0 \subset R_1 \subset R_2 \subset \cdots \subset R_t = S \subset K$$

in which the transform of P_i in R_i becomes the maximal ideal m_i for each $0 \le i \le t$ and v is the m_t -adic order valuation. If v_i denotes the m_i -adic order valuation of K, then P_i is the smallest simple v_i -ideal in R for each i ([14, Theorem (F), p.392]). The conductor ideal C of v is also called the adjoint ideal of the smallest simple v-ideal P ([5]).

Combining notations of v-ideals in two sequences (1) and (3), we rewrite the sequence (1) with the conductor ideal C in it:

(5)
$$m = P_0 \supset P_1 \supset \cdots \supset C \supset \cdots \supset I_{s-1} \supset P_t = P = I_s \supset I_{s+1} \supset \cdots$$

It is known that the above sequence is saturated from m to P, i.e., $\lambda(I_j/I_{j+1}) = 1$ for $0 \le j \le s-1$ [8, Lipman, Theorem A.2], and hence $s = \lambda(R/P) - 1$ since k is algebraically closed. The length between any two consecutive v-ideals $I_j \supset I_{j+1}$ for $j \ge s$ can be measured in terms of the largest integer $\nu \in \mathbb{N}$ such that $I^{\nu}|I_j$ ([8, Theorem 3.1]).

For a simple v-ideal $J \supset P$ with the associated prime divisor w, the sequence of w-ideals containing J coincides with that of v-ideals [8, Lipman, Theorem A.2]. For two regular local rings $T \subset S$ in K, S is said to be proximate to T (denoted by $S \succ T$) if the m(T)-adic order valuation ring contains S([6, (1.3)]). In the sequence (5), the v-predecessor I_{s-1} is the unique integrally closed ideal adjacent to P from above [6, Theorem 4.11], [9, Theorem 3.1]. It was also known that I_{s-1} is the product of simple v-ideals P_i 's associated to R_i 's to which R_t is proximate, and that there are at most two such quadratic transformations R_i 's [6, Theorem 4.11]. One of them is R_{t-1} since R_t is a first quadratic transformation of R_{t-1} . Hence we have either $I_{s-1} = P_{t-1}$ or $I_{s-1} = P_{t-1}P_i$ for some 0 < i < t-2 when R/m is algebraically closed. The simple v-ideal P is said to be free for the former and satellite for the latter. Note that Lipman showed this result without the assumption R/m being algebraically closed [6]. We refer [2] for the proximity relations between valuation ideals for 0-dimensional valuation case.

For an ideal L of R, the (m-adic) order o(L) of L is defined to be the integer r such that $L \subseteq m^r \backslash m^{r+1}$. Let us assume P is a simple integrally closed ideal associated to a prime divisor v, $o(P) = r \ge 1$ and $\operatorname{rank}(P) = t \ge 0$. Let us denote the number of simple v-ideals of order i by n_i for $1 \le i \le r = o(P)$ among t nonmaximal simple v-ideals in the following sequence:

$$P_0 \supset P_1 \supset P_2 \supset \cdots \supset P_{t-1} \supset P_t = P_t$$

We are interested in finding the satellite simple v-ideals, i.e., simple v-ideal P_i whose v-predecessor is not simple.

Let o(P) = 1. If t = 0, then P = m and hence $n_1 = t = 0$, and

$$m\supset m^2\supset m^3\supset m^4\supset\cdots\cdots$$

is the sequence of all the v-ideals. If we further assume o(P) = 1 and t > 0, it is easy to see that $n_1 = t$, the nonmaximal simple v-ideals of order 1 are free, and they form the saturated sequence of all the v-ideals

from m to P. The complete sequence of v-ideals was described in detail for o(P) = 1 case [10].

Let o(P)=2. Any simple v-ideal P_i is of order one or two in the above sequence (3). If P is free, then $o(P_{t-1})=2$ and if P is satellite, then $o(P_{t-1})=1$ and therefore $o(P_i)=1$ for all $i \leq t-2$ as well. Therefore, there exists some ℓ such that $o(P_\ell)=1$ and $o(P_{\ell+1})=2$. In this paper we find such ℓ in terms of the v-value difference n_v of a regular system of parameters x, y when o(P)=2. The results were stated without a proof and used to describe the complete sequence (5) of v-ideals in [11].

Throughout the paper, we assume $m=(x,y), \ o(P)=2, \ {\rm rank}(P)=t\geq 2, \ v(y)=2, \ v(x)=2+b$ for $b\geq 1,$ i.e., $n_v=b.$ We show that there are $n_1=\lceil\frac{b+1}{2}\rceil$ simple nonmaximal v-ideals of order 1 and hence there are $n_2=t-\lceil\frac{b+1}{2}\rceil$ simple v-ideals of order 2. It is also shown that $P_{\lceil\frac{b+3}{2}\rceil}$ is the only satellite simple v-ideal and that $C=P_{\lceil\frac{b-1}{2}\rceil}$ is the conductor ideal of v. The v-predecessor of $P_{\lceil\frac{b+3}{2}\rceil}$ is then obtained as $P_{\lceil\frac{b-1}{2}\rceil} \cdot P_{\lceil\frac{b+1}{2}\rceil} = C \cdot P_{\lceil\frac{b+1}{2}\rceil}$, i.e., $P_{\lceil\frac{b+3}{2}\rceil}$ is proximate to two previous simple v-ideals $C=P_{\lceil\frac{b-1}{2}\rceil}$ and $P_{\lceil\frac{b+1}{2}\rceil}$. For any other simple v-ideal Q of order 2 which is associated to the prime divisor w, we show that $n_w=n_v$ as well as w(R)=v(R).

2. Simple valuation ideals of order two

Throughout this section, we assume that v is a prime divisor of a 2-dimensional regular local ring R, P is the associated simple integrally closed ideal of v, o(P) = 2, rank(P) = t for $t \ge 2$. Let us assume that m = (x, y) and denote |v(x) - v(y)| by n_v . Note that v(m) = o(P) = 2 by reciprocity [6, Corollary (4.8)].

Let us assume $v(y) \leq v(x)$. Since P then is contracted from a first quadratic transformation $R_1 = R[\frac{m}{y}]_N$ for some maximal ideal N of $R[\frac{m}{y}]$ such that $m(V) \cap R[\frac{m}{y}] = N$. Therefore v(x) > v(y) and $v(x) = 2 + n_v$ for some $n_v \geq 1$.

Let us denote n_v by b. In either b=2k even case for $k \geq 1$ or b=2k+1 odd case for $k \geq 0$, we have $\lceil \frac{b-1}{2} \rceil = k$, $\lceil \frac{b+1}{2} \rceil = k+1$, $\lceil \frac{b+3}{2} \rceil = k+2$. With this invariant k for given prime divisor v, we describe the sequence of simple v-ideals from m to P.

Since o(P) = 2, $t = n_1 + n_2$, i.e., there are n_1 nonmaximal simple v-ideals of order 1 and the rest are the ones of order 2 in the sequence:

$$m = P_0 \supset P_1 \supset \cdots \supset P_{n_1} \supset P_{n_1+1} \supset \cdots \supset P_t = P.$$

We use the invariant n_v to determine these number n_1 and hence $n_2 = t - n_1$ as well.

THEOREM 2.1. Let (R, m, k) be a 2-dimensional regular local ring with algebraically closed residue field k. Let P be a simple integrally closed ideal of R which is associated to the prime divisor v. Let o(P) = 2, $n_v = b$ and $\operatorname{rank}(P) = t$. Let n_i be the number of nonmaximal simple v-ideals of order i for i = 1, 2. Then, $n_1 = \lceil \frac{b+1}{2} \rceil$ and $n_2 = t - \lceil \frac{b+1}{2} \rceil$.

PROOF. Let us assume that m = (x, y), v(y) = 2, and v(x) = 2 + b for $b \ge 1$.

If $\overline{b} = 1$, then m^2 is a v-ideal [8, Theorem 1.2]. Hence $P_1 = (x, y^2)$ is the only nonmaximal simple v-ideal of order 1 and $P_2 = (x^2, xy^2, y^3)$ is the simple v-ideal of order 2 and rank 2. Therefore, among simple v-ideals

$$m \supset P_1 \supset P_2 \supset \cdots \supset P_t = P$$

there exists only one nonmaximal simple v-ideal, i.e., $n_1 = 1 = \lceil \frac{b+1}{2} \rceil$ and therefore $n_2 = t - 1 = t - \lceil \frac{b+1}{2} \rceil$ for $t \ge 2$ and b = 1.

Assume $b \geq 2$.

Case 1: b is even $(b = 2k, k \ge 1)$.

In this case,

$$P_1 = (x, y^2) \supset P_2 = (x, y^3) \supset \cdots \supset P_k = (x, y^{k+1})$$

is the sequence of saturated v-ideals of v-values $4,6,\ldots,2k+2$ such that $v(P_k)=v(x)=v(y^{k+1})=2k+2$ for $k\geq 1$. Since $\lambda(P_k/mP_k)=2$, $v(mP_k)=2k+4$, and $P_k\supset I_{k+1}\supset mP_k$, we have that $I_{k+1}=(x-\alpha y^{k+1},y^{k+2})$ is also simple for some $\alpha\neq 0\in R/m$, i.e., $I_{k+1}=P_{k+1}$. Note that $I_{k+2}=mP_k$ since $v(P_{k+1})=2k+3$, $v(mP_k)=2k+4$, and $I_{k+1}\supset I_{k+2}$ are adjacent. Therefore, $I_{k+2}=mP_k$ is the largest v-ideal of order 2 and hence $n_1=k+1=\lceil \frac{b+1}{2}\rceil$ and $n_2=t-\lceil \frac{b+1}{2}\rceil$.

Case 2: $b \text{ is odd}(b = 2k + 1, k \ge 1)$.

In this case,

$$P_1 = (x, y^2) \supset P_2 = (x, y^3) \supset \cdots \supset P_k = (x, y^{k+1}) \supset P_{k+1} = (x, y^{k+2})$$

is the saturated sequence of v-ideals of v-values $4, 6, \ldots, 2k+2, 2k+3$. Therefore, $I_i = P_i$ for $1 \le i \le k+1$. Since $\lambda(P_k/mP_k) = o(P_k) + 1 = 2$ (cf. [3, 4]) and $v(mP_k) = 2k+4$, $I_{k+2} = mP_k$ is the v-ideal adjacent to

 P_{k+1} , i.e., mP_k is the largest v-ideal of order 2. Since $\lambda(P_{k+1}/mP_{k+1}) = 2$ and $v(mP_{k+1}) = 2k + 5$, $I_{k+3} = mP_{k+1}$ is the v-successor of $I_{k+2} = mP_k$. Therefore,

$$m \supset P_1 \supset \cdots \supset P_{k+1} \supset mP_k \supset mP_{k+1}$$

are all the v-ideals from m to mP_{k+1} and therefore $n_1 = k+1 = \lceil \frac{2k+2}{2} \rceil = \lceil \frac{b+1}{2} \rceil$ and $n_2 = t - \lceil \frac{b+1}{2} \rceil$.

In both cases, $o(P_i) = 2$ for $\lceil \frac{b+3}{2} \rceil \le i \le t$, i.e., $\lceil \frac{b+3}{2} \rceil$ is the largest simple v-ideal of order 2 and among the simple v-ideals from m to P,

$$m \supset P_1 \supset \cdots \supset P_{\lceil \frac{b-1}{2} \rceil} \supset P_{\lceil \frac{b+1}{2} \rceil} \supset P_{\lceil \frac{b+3}{2} \rceil} \supset \cdots \supset P_t = P$$

we see that
$$o(P_i) = 1$$
 for $i \leq \lceil \frac{b+1}{2} \rceil$ and $o(P_i) = 2$ for $i \geq \lceil \frac{b+3}{2} \rceil$.

The conductor ideal of v(or the adjoint ideal of the associated simple v-ideal P) is the v-ideal C such that for any successive v-ideals $J \supset J'$ such that $C \supset J \supset J'$, v(J') = v(J) + 1 and it is known that C = L : m for the largest v-ideal L of order o(P) [5, Theorem 2.2]. Using this and Theorem 2.1, we now obtain the conductor ideal of v in our case.

COROLLARY 2.2. Let P, v, $b = n_v$, t be as in Theorem 2.1. Then

- (i) The largest v-ideal of order 2 is $mP_{\lceil \frac{b-1}{2} \rceil}$,
- (ii) The conductor ideal of v is $C = P_{\lceil \frac{b-1}{2} \rceil}$,
- (iii) P_i is satellite if and only if $i = \lceil \frac{b+3}{2} \rceil$,
- (iv) $P_{\lceil \frac{b+3}{2} \rceil}$ is proximate to $P_{\lceil \frac{b-1}{2} \rceil}$ and $P_{\lceil \frac{b+1}{2} \rceil}$.

PROOF. Note that $\lceil \frac{b+3}{2} \rceil = k+2$, $\lceil \frac{b+1}{2} \rceil = k+1$, $\lceil \frac{b-1}{2} \rceil = k$ for either b=2k even or b=2k+1 odd.

(i)–(ii) Let b=2k for $k\geq 1$ or b=2k+1 for $k\geq 0$. In either case, $P_k=(x,y^{k+1})$ by Theorem 2.1. Consider

$$P_{\lceil \frac{b-1}{2} \rceil} = P_k \supset P_{\lceil \frac{b+1}{2} \rceil} = P_{k+1} \supset mP_k \supset mP_{k+1} \supset P_{k+2}.$$

Note that $P_k = I_k$ and $P_{k+1} = I_{k+1}$ such that $v(P_k) = 2k+2$ and $v(P_{k+1}) = 2k+3$. Since $2 \in v(R)$, $v(I_{k+2}) = 2k+4$. Hence $mP_k \subseteq I_{k+2}$ since $v(mP_k) = 2 + (2k+2)$. However, $\mu(P_k) = o(P_k) + 1$ implies that mP_k is a v-ideal, too. Therefore, $mP_k = I_{k+2}$ is the largest v-ideal of order 2, hence $C = mP_k : m = P_k$, i.e., P_k is the conductor ideal of v by [5, Theorem 2.2].

(iii)-(iv) Since $o(P_{k+1}) = 1$ and $o(P_{k+2}) = 2$, they are not adjacent since P_{k+2} is simple. Therefore P_{k+2} is satellite and $o(P_j) = 2$ for all

 $k+2 \le j \le t$, i.e., simple v-ideals of order 2 other than P_{k+2} are free. Since

$$m \supset P_1 \supset \cdots \supset P_k = C \supset P_{k+1}$$

is the set of all v-ideals of order 1 for either b=2k or b=2k+1, they are all free. Since $\lambda(P_k/P_{k+1})=1$ and $\mu(P_k)=2$, therefore $P_{k+1}\supset mP_k$ are adjacent. Since $v(P_{k+1})=2k+3$ and $v(mP_k)=2k+4$, $P_{k+1}\supset I_{k+2}\supseteq mP_k$, where I_{k+2} is the v-successor of P_{k+1} . Therefore, $I_{k+2}=mP_k$. Similarly, $mP_k\supset I_{k+3}\supseteq mP_{k+1}$ since $v(mP_{k+1})=2+(2k+3)$. But, $\lambda(mP_k/mP_{k+1})=1$ implies that $I_{k+3}=mP_{k+1}$. Since $v(P_1P_k)=4+2k+2=2k+6$, $I_{k+4}\supseteq P_1P_k$. Since $v(P_1P_{k+1})=2k+7$, $I_{k+5}\supset P_1P_{k+1}$.

Now we claim that $\lambda(P_1P_k/P_1P_{k+1})=1$, i.e., $P_1P_k\supset P_1P_{k+1}$ are adjacent. For $1\leq i\leq k$, let v_i be the prime divisor associated to P_i and consider two ideals $P_iP_k\supset P_iP_{k+1}$. By intersection multiplicity, we have $\lambda(P_iP_k/P_iP_{k+1})=\lambda(P_k/P_{k+1})+v_i(P_{k+1})-v_i(P_k)=1$ since P_{k+1} is not a v_i -ideal [8, Remark 2.2] while $P_k\supset P_{k+1}$ are adjacent. Therefore we have that $P_iP_k\supset P_iP_{k+1}$ are adjacent for $1\leq i\leq k$. If i=1, we have

$$I_{k+2} = mP_k \supset I_{k+3} = mP_{k+1} \supset I_{k+4} \supset P_1P_k \supset P_1P_{k+1}.$$

We then have $\lambda(mP_k/P_1P_k) = \lambda(m/P_1) + v_k(P_1) - v_k(m) = 1 + (2 - 1) = 2$ since P_k is a simple integrally closed ideal of order 1 and P_1 is also a v_k -ideal. Since $\lambda(I_i/I_{i+1}) = 1$ for any v-ideals containing P by [8, Theorem A.2], therefore we see that $I_{k+4} = P_1P_k$ and $I_{k+5} = P_1P_{k+1}$ by comparing the lengths.

We similarly can show that

$$P_{k+1} \supset mP_k \supset mP_{k+1} \supset P_1P_k \supset P_1P_{k+1} \supset \cdots \supset P_kP_k \supset P_kP_{k+1}$$

is a saturated sequence of v-ideals contained in P_{k+1} . Since this is saturated and none of them other than P_{k+1} are simple, we see that $P_k P_{k+1} \supset P_{k+2}$. Since $o(P_{k+2}) = 2$ and $o(P_{k+1}) = 1$, P_{k+2} is satellite, hence proximate to P_{k+1} and P_i for some $0 \le i \le k$, i.e., $P_{k+1} P_i \supset P_{k+2}$ are adjacent for some $0 \le i \le k$. Therefore, the v-predecessor of P_{k+2} is $P_{k+1} P_k$ from the containments as in the following sequence:

$$P_1P_{k+1}\supset P_2P_{k+1}\supset\cdots\supset P_{k-1}P_{k+1}\supset P_kP_{k+1}\supset P_{k+2}.$$

Since $o(P_t) = 2$, all the other simple v-ideals

$$P_{k+2} \supset P_{k+3} \supset \cdots \supset P_t$$

are saturated and hence P_i is free for $k+3 \le i \le t$ and for all $1 \le i \le k+1$ as well. Note that $t=\operatorname{rank}(P) \ge k+2 = \lceil \frac{b+3}{2} \rceil$ from the above construction.

We showed that P_k is the conductor ideal of v, P_{k+1} is the smallest v-ideal of order 1, mP_k is the largest v-ideal of order 2, P_{k+2} is the only satellite simple v-ideal which is adjacent to $P_{k+1}P_k$, and the rank of P is at least k+2. Among the simple v-ideals of v, we also showed that $o(P_i)=1$ for $1\leq i\leq k+1$ and $o(P_i)=2$ for $k+2\leq i\leq t$. Let v_i denote the prime divisor associated to P_i for each $1\leq i\leq t$.

If $i \leq k+1$, i.e., $o(P_i) = 1$, then the complete sequence of v_i -ideals was obtained in [10].

If $i \geq k+2$,

$$m \supset P_1 \supset \cdots \supset P_{k+1} \supset P_{k+2} \supset \cdots \supset P_i$$

is the sequence of all simple v_i -ideals as well. Furthermore, the sequence of all v_i -ideals from m to P_i coincides with the sequence of v-ideals from m to P_i by [8, Lipman, Theorem A.2]. It is known that if $J \supset I$ are adjacent simple integrally closed ideal associated to the prime divisors w and v respectively, then o(J) = o(I) and w(R) = v(R) [7, Theorem 2]. Now we further compare w(x) to v(x), w(y) to v(y), and b_w to n_v if w is the associated prime divisor of P_i for $k + 2 \le i < t$.

COROLLARY 2.3. Let $P, v, b = n_v, t$ be as in Theorem 2.1. Let $w = v_i$ be the prime divisor associated to the simple v-ideal P_i for $k+2 \le i < t$. Then, $w(y) = v(y), n_w = n_v$, and w(R) = v(R).

PROOF. By the previous theorem and corollary, we have $o(P_i) = 2$ for $k + 2 \le i \le t$. Now let us denote $v_i = w$, $P_i = Q$ for $k + 2 \le i < t$ and $n_v = b$. Since o(P) = 2, we have $t \ge 2$. Since $P_{k+1} \supset \cdots \supset P_t$ are saturated simple v-ideals of order 2, we see that w(R) = v(R) by using [7, Theorem 2] inductively.

Let $R = R_0 \subset R_1 \subset \cdots \subset R_i \subset \cdots \subset R_t$ be the quadratic sequence along v. Since o(Q) = w(m) = 2, $t \geq 2$, and $R_1 = R[\frac{x}{y}]_{(\frac{x}{y},y)}$ is dominated by R_t , we have $w(y) = w(m) = 2 < w(x) = 2 + b_i$ for some $b_i > 0$, where $b_i = n_{v_i} = n_w$.

If b=1, then m^2 is a v-ideal since $\lceil \frac{r}{b} \rceil = 2$ [8, Theorem 1.2]. Since $m^2 \supset Q$, m^2 is also a w-ideal [8, Theorem A.2]. Therefore, $\lceil \frac{r}{b_i} \rceil = \lceil \frac{2}{b_i} \rceil = 2$, hence $b_i = 1 = b$.

Assume $b \geq 2$. Then, m^2 is not a v-ideal and hence is not a w-ideal since $m^2 \supset Q \supset P$. Since Q is a w-ideal as well as a v-ideal, the sequence of v-ideals from m to Q in the following sequence

$$m \supset P_1 \supset \cdots \supset P_k \supset P_{k+1} \supset mP_k \supset \cdots$$

$$\supset P_{k+2} \supset \cdots \supset P_i = Q \supset \cdots \supset P_t = P$$

is also the sequence of w-ideals from m to Q [8, Theorem A.2].

Case 1: *b* is even($b = 2k, k \ge 1$).

In this case, we have the following containments:

$$P_{k-1} = (x, y^k) \supset P_k = (x, y^{k+1}) \supset P_{k+1}$$

= $(x - \alpha y^{k+1}, y^{k+2}) \supset mP_k \supset \cdots \supset P_i = Q$

for some $\alpha \neq 0$ in R/m by Theorem 2.1. Since $y^k \in P_{k-1} \backslash P_k$ and $x \in P_k$ imply that $w(x) > w(y^k) = 2k$ and hence $w(P_k) = \min\{w(x), 2k+2\}$ is either 2k+1 or 2k+2. Suppose w(x) = 2k+1, i.e., $b_i = 2k-1$. Then $w(P_k) = 2k+1$ and $w(P_{k+1}) = 2k+2$ since $2 \in w(R)$. Then, $y^{k+1} \in P_{k+1}$ since $w(y^{k+1}) = 2k+2$, contradiction. Therefore, $w(x) \geq 2k+2$. Suppose $w(x) \geq 2k+3$. Then $w(P_k) = 2k+2$. Since $w(x) \geq 2k+3$ and P_{k+1} is the successive w-ideal of P_k , we see that $x \in P_{k+1}$, contradiction. Therefore, w(x) = 2k+2 = b+2 and hence $n_w = n_v$.

Case 2: b is odd($b = 2k + 1, k \ge 1$).

In this case, we easily obtain $P_k = (x, y^{k+1})$ and $P_{k+1} = (x, y^{k+2})$. If w(x) = 2k+2, then $w(P_{k+1}) = w(P_k)$, contradiction. Therefore, w(x) > 2k+2 and hence $w(P_{k+1}) = \min\{w(x), 2k+4\}$ is either 2k+3 or 2k+4. Since mP_k is also a w-ideal of order $2, x \notin mP_k$ implies that $w(x) < w(mP_k) = 2k+4$. Therefore, w(x) = 2k+3 = 2+b, hence $n_w = n_v$ as well.

ACKNOWLEDGEMENTS. This work was supported by Korea Research Foundation KRF-97-D00010 and partially by KRF-99-015-D10002.

References

- [1] S. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 70-99.
- [2] M. A. Hoskin, Zero-dimensional valuation ideals associated with plane curve branches, Proc. London Math. Soc. 6 (1956), no. 3, 70–99.
- [3] C. Huneke, Integrally closed ideals in two-dimensional regular local rings, Proc. Microprogram, in: Commutative Algebra, June 1987, MSRI Publication Series, vol. 15, Springer-Verlag, New York, 1989, 325–337.
- [4] C. Huneke and J. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 481–500.
- [5] J. Lipman, Adjoints and polars of simple complete ideals in two-dimensional regular local rings, Bull. Soc. Math. Belgique 45 (1993), 223-244.
- [6] ______, Proximity inequalities for complete ideals in two-dimensional regular local rings, Contemp. Math. 159 (1994), 293–306.
- [7] S. Noh, The value semigroups of prime divisors of the second kind on 2-dimensional regular local rings, Trans. Amer. Math. Soc. **336** (1993), 607-619.
- [8] ______, Sequence of valuation ideals of prime divisors of the second kind in 2-dimensional regular local rings, J. Algebra 158 (1993), 31-49.

- [9] ______, Adjacent integrally closed ideals in dimension two, J. Pure Appl. Algebra 85 (1993), 163–184.
- [10] _____, Valuation ideals of order one in two-dimensional regular local rings, Comm. Algebra 28 (2000), no. 2, 613-624.
- [11] ______, Valuation ideals of order two in 2-dimensional regular local rings, Math. Nachr. 261-262 (2003), 123-140.
- [12] P. Ribenboim, The theory of classical valuations, Springer-Verlag, New York, 1999.
- [13] O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math. 60 (1938), 151-204.
- [14] O. Zariski and P. Samuel, Commutative Algebra, vol. 2, D. Van Nostrand, Princeton, 1960.

Jooyoun Hong Department of Mathematics Purdue University West Lafayette, IN 47907, U.S.A. E-mail: hong@math.purdue.edu

Heisook Lee Department of Mathematics Ewha Womans University Seoul 120-750, Korea E-mail: hsllee@ewha.ac.kr

Sunsook Noh Department of Mathematics Education Ewha Womans University Seoul 120-750, Korea E-mail: noh@ewha.ac.kr