• Title/Summary/Keyword: (von Neumann) regular rings

Search Result 39, Processing Time 0.019 seconds

ON IDEMPOTENTS IN RELATION WITH REGULARITY

  • HAN, JUNCHEOL;LEE, YANG;PARK, SANGWON;SUNG, HYO JIN;YUN, SANG JO
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.217-232
    • /
    • 2016
  • We make a study of two generalizations of regular rings, concentrating our attention on the structure of idempotents. A ring R is said to be right attaching-idempotent if for $a{\in}R$ there exists $0{\neq}b{\in}R$ such that ab is an idempotent. Next R is said to be generalized regular if for $0{\neq}a{\in}R$ there exist nonzero $b{\in}R$ such that ab is a nonzero idempotent. It is first checked that generalized regular is left-right symmetric but right attaching-idempotent is not. The generalized regularity is shown to be a Morita invariant property. More structural properties of these two concepts are also investigated.

Normal Pairs of Going-down Rings

  • Dobbs, David Earl;Shapiro, Jay Allen
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Let (R, T) be a normal pair of commutative rings (i.e., R ${\subseteq}$ T is a unita extension of commutative rings, not necessarily integral domains, such that S is integrally closed in T for each ring S such that R ${\subseteq}$ S ${\subseteq}$ T) such that the total quotient ring of R is a von Neumann regular ring. Let P be one of the following ring-theoretic properties: going-down ring, extensionally going-down (EGD) ring, locally divided ring. Then R has P if and only if T has P. An example shows that the "if" part of the assertion fails if P is taken to be the "divided domain" property.

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

  • Zeng, Yuedi;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.11-24
    • /
    • 2013
  • Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.

ON GI-FLAT MODULES AND DIMENSIONS

  • Gao, Zenghui
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.203-218
    • /
    • 2013
  • Let R be a ring. A right R-module M is called GI-flat if $Tor^R_1(M,G)=0$ for every Gorenstein injective left R-module G. It is shown that GI-flat modules lie strictly between flat modules and copure flat modules. Suppose R is an $n$-FC ring, we prove that a finitely presented right R-module M is GI-flat if and only if M is a cokernel of a Gorenstein flat preenvelope K ${\rightarrow}$ F of a right R-module K with F flat. Then we study GI-flat dimensions of modules and rings. Various results in [6] are developed, some new characterizations of von Neumann regular rings are given.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.897-908
    • /
    • 2021
  • In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

REMARKS ON A GOLDBACH PROPERTY

  • Jang, Sun Ju
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.403-407
    • /
    • 2011
  • In this paper, we study Noetherian Boolean rings. We show that if R is a Noetherian Boolean ring, then R is finite and $R{\simeq}(\mathbb{Z}_2)^n$ for some integer $n{\geq}1$. If R is a Noetherian ring, then R/J is a Noetherian Boolean ring, where J is the intersection of all ideals I of R with |R/I| = 2. Thus R/J is finite, and hence the set of ideals I of R with |R/I| = 2 is finite. We also give a short proof of Hayes's result : For every polynomial $f(x){\in}\mathbb{Z}[x]$ of degree $n{\geq}1$, there are irreducible polynomials $g(x)$ and $h(x)$, each of degree $n$, such that $g(x)+h(x)=f(x)$.

ON STRONGLY QUASI PRIMARY IDEALS

  • Koc, Suat;Tekir, Unsal;Ulucak, Gulsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.729-743
    • /
    • 2019
  • In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let R be a commutative ring with nonzero identity and Q a proper ideal of R. Then Q is called strongly quasi primary if $ab{\in}Q$ for $a,b{\in}R$ implies either $a^2{\in}Q$ or $b^n{\in}Q$ ($a^n{\in}Q$ or $b^2{\in}Q$) for some $n{\in}{\mathbb{N}}$. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph ${\Gamma}_I(R)$ and denote it by ${\Gamma}^*_I(R)$, where I is an ideal of R. We investigate the relations between ${\Gamma}^*_I(R)$ and ${\Gamma}_I(R)$. Further, we use strongly quasi primary ideals and ${\Gamma}^*_I(R)$ to characterize von Neumann regular rings.