• Title/Summary/Keyword: (m, n)-ideal

Search Result 181, Processing Time 0.019 seconds

FINITENESS PROPERTIES GENERALIZED LOCAL COHOMOLOGY WITH RESPECT TO AN IDEAL CONTAINING THE IRRELEVANT IDEAL

  • Dehghani-Zadeh, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1215-1227
    • /
    • 2012
  • The membership of the generalized local cohomology modules $H_a^i$(M,N) of two R-modules M and N with respect to an ideal a in certain Serre subcategories of the category of modules is studied from below ($i<t$). Furthermore, the behaviour of the $n$th graded component $H_a^i(M,N)_n$ of the generalized local cohomology modules with respect to an ideal containing the irrelevant ideal as $n{\rightarrow}-{\infty}$ is investigated by using the above result, in certain graded situations.

GENERALIZED LOCAL COHOMOLOGY AND MATLIS DUALITY

  • Abbasi, Ahmad
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.513-519
    • /
    • 2008
  • Let (R, m) be a Noetherian local ring with maximal ideal m, E := $E_R$(R/m) and let I be an ideal of R. Let M and N be finitely generated R-modules. It is shown that $H^n_I(M,(H^n_I(N)^{\vee})){\cong}(M{\otimes}_RN)^{\vee}$ where grade(I, N) = n = $cd_i$(I, N). We also show that for n = grade(I, R), one has $End_R(H^n_I(P,R)^{\vee}){\cong}Ext^n_R(H^n_I(P,R),P^*)^{\vee}$.

ON ENDOMORPHISM RING OF H-INVARIANT MODULES

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • The relationships between submodules of a module and ideals of the endomorphism ring of a module had been studied in [1]. For a submodule L of a moudle M, the set $I^L$ of all endomorphisms whose images are contained in L is a left ideal of the endomorphism ring End (M) and for a submodule N of M, the set $I_N$ of all endomorphisms whose kernels contain N is a right ideal of End (M). In this paper, author defines an H-invariant module and proves that every submodule of an H-invariant module is the image and kernel of unique endomorphisms. Every ideal $I^L(I_N)$ of the endomorphism ring End(M) when M is H-invariant is a left (respectively, right) principal ideal of End(M). From the above results, if a module M is H-invariant then each left, right, or both sided ideal I of End(M) is an intersection of a left, right, or both sided principal ideal and I itself appropriately. If M is an H-invariant module then the ACC on the set of all left ideals of type $I^L$ implies the ACC on M. Also if the set of all right ideals of type $I^L$ has DCC, then H-invariant module M satisfies ACC. If the set of all left ideals of type $I^L$ satisfies DCC, then H-invariant module M satisfies DCC. If the set of all right ideals of type $I_N$ satisfies ACC then H-invariant module M satisfies DCC. Therefore for an H-invariant module M, if the endomorphism ring End(M) is left Noetherian, then M satisfies ACC. And if End(M) is right Noetherian then M satisfies DCC. For an H-invariant module M, if End(M) is left Artinian then M satisfies DCC. Also if End(M) is right Artinian then M satisfies ACC.

  • PDF

RINGS WITH REFLEXIVE IDEALS

  • Han, Juncheol;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.305-316
    • /
    • 2018
  • Let R be a ring with identity. A right ideal ideal I of a ring R is called ref lexive (resp. completely ref lexive) if $aRb{\subseteq}I$ implies that $bRa{\subseteq}I$ (resp. if $ab{\subseteq}I$ implies that $ba{\subseteq}I$) for any $a,\;b{\in}R$. R is called ref lexive (resp. completely ref lexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called the ref lexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K(M_n(R))=M_n(K(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x]{\subseteq}K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if R[x] is reflexive.

DEPTHS OF THE REES ALGEBRAS AND THE ASSOCIATED GRADED RINGS

  • Kim, Mee-Kyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.210-214
    • /
    • 1994
  • The purpose of this paper is to investigate the relationship between the depths of the Rees algebra R[It] and the associated graded ring g $r_{I}$(R) of an ideal I in a local ring (R,m) of dim(R) > 0. The relationship between the Cohen-Macaulayness of these two rings has been studied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if J $I^{n}$ = $I^{n+1}$ for some integer n.geq.0. A reduction J of I is called a minimal reduction of I. The reduction number of I with respect to J is defined by (Fig.) S. Goto and Y.Shimoda characterized the Cohen-Macaulay property of the Rees algebra of the maximal ideal of a Cohen-Macaulay local ring in terms of the Cohen-Macaulay property of the associated graded ring of the maximal ideal and the reduction number of that maximal ideal. Let us state their theorem.m.m.

  • PDF

ON QUASI-STABLE EXCHANGE IDEALS

  • Chen, Huanyin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • We introduce, in this article, the quasi-stable exchange ideal for associative rings. If I is a quasi-stable exchange ideal of a ring R, then so is $M_n$(I) as an ideal of $M_n$(R). As an application, we prove that every square regular matrix over quasi-stable exchange ideal admits a diagonal reduction by quasi invertible matrices. Examples of such ideals are given as well.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.