J. Korean Math. Soc. 47 (2010), No. 1, pp. 1–15 DOI 10.4134/JKMS.2010.47.1.001

ON QUASI-STABLE EXCHANGE IDEALS

HUANYIN CHEN

ABSTRACT. We introduce, in this article, the quasi-stable exchange ideal for associative rings. If I is a quasi-stable exchange ideal of a ring R, then so is $M_n(I)$ as an ideal of $M_n(R)$. As an application, we prove that every square regular matrix over quasi-stable exchange ideal admits a diagonal reduction by quasi invertible matrices. Examples of such ideals are given as well.

1. Introduction

Following Ara (cf. [1]), an ideal I of a ring R is an exchange ideal provided that for every $x \in I$ there exist an idempotent $e \in I$ and elements $r, s \in I$ such that e = xr = x + s - xs. Clearly, an ideal I of a ring R is an exchange ideal if and only if for any $x \in I$, there exists an idempotent $e \in xR$ such that $1-e \in (1-x)R$. Exchange ideal plays a key role in the direct sum decomposition theory of exchange rings. Many authors have studied such ideals, e.g., [1] and [12].

So as to investigate directly infinite rings, we introduce a new class of exchange ideals, i.e., quasi-stable exchange ideals of a ring R. If I is a quasi-stable exchange ideal of a ring R, we will show that $M_n(I)$ is a quasi-stable exchange ideal of $M_n(R)$. As is well known, every square matrix over a unit-regular ring admits a diagonal reduction. Ara et. al. extended this result and proved that every square regular matrix over a separative exchange ring admits a diagonal reduction by invertible matrices (cf. [2]). It is interesting to investigate diagonal reduction of matrices over an ideal of a ring R even though there exist some square matrices over R which can not be reduced. As an application, we prove that every square regular matrix over quasi-stable exchange ideal admits a diagonal reduction by quasi invertible matrices. These also give nontrivial generalizations of [4, Theorem 16] and [6, Theorem 11].

Throughout, all rings are associative with identity, all ideals are two-sided ideals and all modules are right unitary modules. We use $M_n(R)$ to denote

O2010 The Korean Mathematical Society

Received February 15, 2007.

 $^{2000\} Mathematics\ Subject\ Classification.\ 16E50,\ 19B10.$

Key words and phrases. quasi-stable ideal, exchange ideal, diagonal reduction.

HUANYIN CHEN

the ring of $n \times n$ matrices over R with identity I_n . $GL_n(R)$ denotes the *n*dimensional general linear group of R. Set $GL_n(I) = GL_n(R) \cap (I_n + M_n(I))$. An element $x \in R$ is regular provided that x = xyx for a $y \in R$. $\Gamma(I)$ stands for the set of all products of a left invertible element and a right invertible element in 1 + I, i.e., $\{uv \in R \mid \exists s, t \in 1 + I \text{ such that } su = 1, vt = 1\}$.

2. Equivalent characterizations

Definition 2.1. Let I be an ideal of a ring R. We say that I is a right quasi-stable ideal if aR + bR = R with $a \in I, b \in R$ implies that there exists $y \in R$ such that $a + by \in \Gamma(I)$. We say that I is a left quasi-stable ideal if Ra + Rb = R with $a \in I, b \in R$ implies that there exists $z \in R$ such that $a + zb \in \Gamma(I)$. An ideal I of a ring R is a quasi-stable ideal in case it is both right and left quasi-stable ideal.

Let J(R) be the Jacobson radical of rings R. If ax + b = 1 with $a \in J(R), x, b \in R$, then $b \in U(R)$. Hence, $a + b \cdot b^{-1} = 1 + J(R) \in \Gamma(J(R))$. Thus, J(R) is a right quasi-stable exchange ideal. The purpose of this section is to investigate several equivalent characterizations of right quasi-stable ideals. The left quasi-stable ideals have analogous results.

Theorem 2.2. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a right quasi-stable ideal.
- (2) Every element in I is a product of an idempotent in I and an element in $\Gamma(I)$.

Proof. $(1) \Rightarrow (2)$ Given any $x \in I$, there exists $y \in I$ such that x = xyx. Since xy + (1 - xy) = 1 with $x \in I$, we have $z \in R$ such that $x + (1 - xy)z = w \in \Gamma(I)$. So x = xyx = xy(x + (1 - xy)z) = ew, where $e = xy \in I$ is an idempotent.

 $(2) \Rightarrow (1)$ Suppose that ax + b = 1 with $a \in I, x, b \in R$. Then $b \in 1 + I$. Since I is an exchange ideal of R, by [1, Lemma 1.1], we have an idempotent e = bs and 1 - e = (1 - b)t for some $s, t \in R$. Hence axt + e = 1, and then (1 - e)axt + e = 1. So $(1 - e)a \in I$ is regular. Thus we have an idempotent $f \in I$ and a $w \in \Gamma(I)$ such that (1 - e)a = fw. So fwxt + e = 1, and then fwxt(1 - f) + e(1 - f) = 1 - f. We infer that f + e(1 - f) = 1 - fwxt(1 - f). Hence, (1 - e)a + e(1 - f)w = fw + e(1 - f)w = (1 - fwxt(1 - f))w. As a result, $a + bs((1 - f)w - a) = (1 + fwxt(1 - f))^{-1}w \in \Gamma(I)$. Therefore I is a right quasi-stable ideal.

Corollary 2.3. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a right quasi-stable ideal.
- (2) Whenever ax + b = 1 with $a, x \in I, b \in 1 + I$, there exists $y \in R$ such that $a + by \in \Gamma(I)$.

Proof. $(1) \Rightarrow (2)$ is trivial.

 $(2) \Rightarrow (1)$ Let $x \in I$ be regular. Then we have $y \in I$ such that x = xyx. Since xy + (1-xy) = 1 with $x, y \in I, 1-xy \in 1+I$, by hypothesis, there exists $z \in R$ such that $x + (1-xy)z = w \in \Gamma(I)$. Thus, x = xyx = xy(x + (1-xy)z) = ew, where $e = xy \in I$ is an idempotent. According to Theorem 2.2, we obtain the result. \Box

Recall that an ideal I of a ring R has stable range one provided that aR + bR = R with $a \in I, b \in R$ implies that there exists $y \in R$ such that $a + by \in GL_1(R)$. We recall a simple known result.

Lemma 2.4. Given $ax + b = 1, a, x, b \in R$, then the following hold:

- (1) If u(a+by) = 1, then (x+(1-xy)ub)(a+y(1-xa)) = 1. If (a+by)u = 1, then (a+y(1-xa))(x+(1-xy)ub) = 1.
- (2) If (x+zb)v = 1, then (x+(1-xa)z)(a+bv(1-za)) = 1. If v(x+zb) = 1, then (a+bv(1-za))(x+(1-xa)z) = 1.

Proof. Straightforward.

Proposition 2.5. Let I be an exchange ideal of a ring R. If I has stable range one, then I is a right quasi-stable ideal

Proof. Assume that ax + b = 1 with $a, x \in I, b \in 1 + I$. Then (a + (1 - a)b)(x + b) + (1 - a)b(1 - (x + b)) = 1, where $a + (1 - a)b \in 1 + I$. Since I has stable range one, we have $y \in R$ such that $(a + (1 - a)b) + (1 - a)b(1 - (x + b))y \in GL_1(I)$. That is, $a + (1 - a)b(1 + (1 - (x + b))y) \in GL_1(I)$. As a(x + b) + (1 - a)b = 1, we can find $z \in R$ such that $x + b + z(1 - a)b \in GL_1(I)$, i.e., $x + (1 + z(1 - a))b \in GL_1(I)$. By using Lemma 2.4 again, we have $t \in R$ such that $a + bt \in GL_1(I)$. Therefore I is a right quasi-stable ideal, as desired. □

It follows from Lemma 2.4 that stable range one for ideals is right and left symmetric. Recall that a ring R is perfect in case R/J(R) is a division ring and idempotents lift modulo J(R). Consequently, every ideal of a perfect ring is quasi-stable.

Proposition 2.6. Let I be an exchange ideal of a ring R. Then the following are equivalent:

- (1) I is a right quasi-stable ideal.
- (2) For any regular $a, b \in I$, aR = bR implies that there exists $w \in \Gamma(I)$ such that a = bw.

Proof. (1) \Rightarrow (2) Suppose that aR = bR with regular $a, b \in I$. Then we have $x, y \in R$ such that ax = b and a = by. Assume that b = bb'b. Replacing b'by with y, we may assume that $y \in I$. From yx + (1 - yx) = 1, we have $z \in R$ such that $y + (1 - yx)z = w \in \Gamma(I)$. Hence a = by = b(y + (1 - yx)z) = bw, as required.

HUANYIN CHEN

 $(2) \Rightarrow (1)$ For any regular $x \in I$, there exists an idempotent $e \in I$ such that xR = eR. So x = ew for some $w \in \Gamma(I)$. Therefore I is a right quasi-stable ideal by Theorem 2.2.

3. Extensions of matrices

A natural problem asks whether quasi-stable exchange ideal of a ring is invariant under matrix extension. In this section, we give this problem an affirmative answer. In the sequel, we say that the pair (a, b) is an *I*-unimodular row in case ax + by = 1 for some $x \in I, y \in R$. The *I*-unimodular row (a, b) is called *I*-reducible if there exists $z \in R$ such that $a + bz \in \Gamma(I)$.

Lemma 3.1. Let (a,b) be a *I*-unimodular row in a ring *R*. Let $u, v \in GL_1(I)$ and $c \in R$. Then (vau + vbc, vb) is also *I*-unimodular row. Furthermore, (a,b)is *I*-reducible if and only if so is (vau + vbc, vb).

Proof. Since (a, b) is an *I*-unimodular row in a ring *R*, we have $x \in I, y \in R$ such that ax + by = 1. Hence $(vau + vbc)(u^{-1}xv^{-1}) + vb(y - cu^{-1}x)v^{-1} = 1$. Clearly, $u^{-1}xv^{-1} \in I$. So (vau + vbc, vb) is an *I*-unimodular row. Assume that (a, b) is *I*-reducible. Then we have $y \in R$ such that $a + by \in \Gamma(I)$. Choose z = yu - c. Then we see that $(vau + vbc) + (vb)z = v(a + by)u \in \Gamma(I)$; hence, (au + vbc, vb) is *I*-reducible. Conversely, assume that there exists $z \in R$ such that $vau + vbc + vbz \in \Gamma(I)$. Then $v(a + b(c + z)u^{-1})u \in \Gamma(I)$. As $u, v \in GL_1(I)$, $a + b(c + z)u^{-1} \in \Gamma(I)$. Therefore (a, b) is *I*-reducible. \Box

Theorem 3.2. Let I be a right quasi-stable exchange ideal of a ring R. Then $M_n(I)$ is a right quasi-stable exchange ideal of $M_n(R)$ for all $n \in \mathbb{N}$.

Proof. By [1, Theorem 1.4], $M_n(I)$ is an exchange ideal of $M_n(R)$. We now induct on n. Assume inductively that the result holds for n. It will suffice to show that the result holds for n + 1. Suppose that (*)

 $\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1(n+1)} \\ a_{21} & a_{22} & \cdots & a_{2(n+1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(n+1)1} & a_{(n+1)2} & \cdots & a_{(n+1)(n+1)} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1(n+1)} \\ b_{21} & b_{22} & \cdots & b_{2(n+1)} \\ \vdots & \vdots & \ddots & \vdots \\ b_{(n+1)1} & b_{(n+1)2} & \cdots & b_{(n+1)(n+1)} \end{pmatrix} \\ + \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1(n+1)} \\ c_{21} & c_{22} & \cdots & c_{2(n+1)} \\ \vdots & \vdots & \ddots & \vdots \\ c_{(n+1)1} & c_{(n+1)2} & \cdots & c_{(n+1)(n+1)} \end{pmatrix} = I_{n+1}$

in $M_{n+1}(R)$, where

$$\begin{pmatrix} a_{11} & \cdots & a_{1(n+1)} \\ a_{21} & \cdots & a_{2(n+1)} \\ \vdots & \ddots & \vdots \\ a_{(n+1)1} & \cdots & a_{(n+1)(n+1)} \end{pmatrix}, \begin{pmatrix} b_{11} & \cdots & b_{1(n+1)} \\ b_{21} & \cdots & b_{2(n+1)} \\ \vdots & \ddots & \vdots \\ b_{(n+1)1} & \cdots & b_{(n+1)(n+1)} \end{pmatrix} \in M_{n+1}(I).$$

Then $a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1(n+1)}b_{(n+1)1} + c_{11} = 1$ with $a_{11} \in I$. As I is a quasi-stable exchange ideal of R, we have $z_1 \in R$ such that $a_{11} + (a_{12}b_{21} + \cdots + a_{1n}b_{n1} + c_{11})z_1 \in \Gamma(I)$. Since

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ b_{21}z_1 & 1 & 0 & \cdots & 0 \\ b_{31}z_1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{(n+1)1}z_1 & 0 & 0 & \cdots & 1 \end{pmatrix} \in GL_{n+1}(I),$$

by virtue of Lemma 3.1, (*) is $M_{n+1}(I)$ -reducible if and only if this is so for the $M_{n+1}(I)$ -unimodular row with elements

(a_{11}	a_{12}	a_{13}		a_1	(n+1)	(1	0	0	• • •	0)
	a_{21}	a_{22}	a_{23}		a_2	(n+1)		$b_{21}z_1$	1	0	•••	0
	a_{31}	a_{32}	a_{33}	• • •	a_3	(n+1)		$b_{31}z_1$	0	1	• • •	0
	:	:	÷	·.		:		÷	÷	÷	·	:
($a_{(n+1)1}$	$a_{(n+1)2}$	$a_{(n+1)3}$		$a_{(n+)}$	$_{1)(n+1)}$	$\int b_{(i)}$	$(n+1)1z_1$	0	0		1 /
	$\int c_{11}$	c_1	2 (13	•••	$c_{1(n+1)}$		$\int z_1$	0	0		0 \
	c_{21}	c_2	2 (23	• • •	$c_{2(n+1)}$		0	0	0		0
+	c_{31}	c_3	2 (33	•••	$c_{3(n+1)}$		0	0	0	• • •	0
		:		:	·	:			÷	÷	·	:
	$\int c_{(n+1)}$	$c_{(n+1)1}$ $c_{(n+1)1}$	$c_{(r)}$	+1)3		$c_{(n+1)(n+2)}$	1) /	0	0	0		0 /

and

c_{11}	c_{12}	c_{13}	• • •	$c_{1(n+1)}$	۱
c_{21}	c_{22}	c_{23}	•••	$c_{2(n+1)}$	
c_{31}	c_{32}	c_{33}	•••	$c_{3(n+1)}$	Ι.
÷	÷	÷	۰.	÷	
$c_{(n+1)1}$	$c_{(n+1)2}$	$c_{(n+1)3}$	• • •	$c_{(n+1)(n+1)}$ /	/

So we assume that $a_{11} \in \Gamma(I)$. From $c_{21}, \ldots, c_{(n+1)1} \in I$, we have $a_{ij} \in I$ (either $i \neq 1$ or $j \neq 1$) in (*). Write $a_{11} = uv, su = 1, vt = 1, s, t \in 1 + I$. Then $sa_{11}t = 1$, and so

$\left(s\right)$	0	0		0 \
$1 - a_{11}ts$	$a_{11}t$	0	• • •	0
0	0	1	• • •	0
	÷	÷	۰.	:
0	0	0	•••	1 /

$$\times \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1(n+1)} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2(n+1)} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3(n+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{(n+1)1} & a_{(n+1)2} & a_{(n+1)3} & \cdots & a_{(n+1)(n+1)} \end{pmatrix} \\ \times \begin{pmatrix} t & 1 - tsa_{11} & 0 & \cdots & 0 \\ 0 & sa_{11} & 0 & \cdots & 0 \\ 0 & sa_{11} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \\ = \begin{pmatrix} 1 & d_{12} & d_{13} & \cdots & d_{1(n+1)} \\ d_{21} & d_{22} & d_{23} & \cdots & d_{2(n+1)} \\ d_{31} & d_{32} & d_{33} & \cdots & d_{3(n+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_{(n+1)1} & d_{(n+1)2} & d_{(n+1)3} & \cdots & d_{(n+1)(n+1)} \end{pmatrix},$$

where

$$\begin{pmatrix} s & 0 & 0 & \cdots & 0 \\ 1 - a_{11}ts & a_{11}t & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a_{11}t & 1 - a_{11}ts & 0 & \cdots & 0 \\ 0 & s & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1},$$

$$\begin{pmatrix} t & 1 - tsa_{11} & 0 & \cdots & 0 \\ 0 & sa_{11} & 0 & \cdots & 0 \\ 0 & sa_{11} & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} \in GL_{n+1}(I).$$

Thus (*) is $M_{n+1}(I)$ -reducible if and only if this is so for the $M_{n+1}(I)$ -unimodular row with elements

$$\begin{pmatrix} 1 & d_{12} & d_{13} & \cdots & d_{1(n+1)} \\ d_{21} & d_{22} & d_{23} & \cdots & d_{2(n+1)} \\ d_{31} & d_{32} & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_{(n+1)1} & d_{3(n+1)} & * & \cdots & d_{(n+1)(n+1)} \end{pmatrix},$$

$$\begin{pmatrix} s & 0 & 0 & \cdots & 0 \\ 1 - a_{11}ts & a_{11}t & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1(n+1)} \\ c_{21} & c_{22} & c_{23} & \cdots & c_{2(n+1)} \\ c_{31} & c_{32} & c_{33} & \cdots & c_{3(n+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{(n+1)1} & c_{(n+1)2} & c_{(n+1)3} & \cdots & c_{(n+1)(n+1)} \end{pmatrix}.$$

In (*), we may assume that $d_{ij} \in I$ (either $3 \le i \le n+1$ or $3 \le j \le n+1$) and $d_{12} = sa_{11}(1 - tsa_{11}) + sa_{12}sa_{11}, d_{21} = (1 - a_{11}ts)a_{11}t + a_{11}ta_{21}t, d_{22} = ((1 - a_{11}ts)a_{11} + a_{11}ta_{21})(1 - tsa_{11}) + ((1 - a_{11}ts)a_{12} + a_{11}ta_{22})sa_{11} \in I$. By Lemma 3.1 again, (*) is $M_{n+1}(I)$ -reducible if and only if this is so for the $M_{n+1}(I)$ -unimodular row with elements

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & * & * & \cdots & * \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ * & 1 & 0 & \cdots & 0 \\ * & 1 & 0 & \cdots & 0 \\ * & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1(n+1)} \\ c_{21} & c_{22} & c_{23} & \cdots & c_{2(n+1)} \\ c_{31} & c_{32} & c_{33} & \cdots & c_{3(n+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{(n+1)1} & c_{(n+1)2} & c_{(n+1)3} & \cdots & c_{(n+1)(n+1)} \end{pmatrix}.$$

So we may assume that $a_{11} = 1, a_{1i} = 0 = a_{i1}$ $(2 \le i \le n+1)$ in (*). Furthermore, we may assume that (*) is in the following form:

$$\begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & D \end{pmatrix} \begin{pmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} + \begin{pmatrix} c_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & I_n \end{pmatrix},$$

 $D \in M_n(I)$ and $\begin{pmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} \in M_{n+1}(I)$. This infers that $DE_{22} + C_{22} = I_n$. By the induction hypothesis, $M_n(I)$ is a quasi-stable exchange ideal of $M_n(R)$. So we can find $Z_2 \in M_n(R)$ such that $D + C_{22}Z_2 \in \Gamma(M_n(I))$. Thus, we pass to the $M_{n+1}(I)$ -unimodular row with elements

$$\begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & D \end{pmatrix} + \begin{pmatrix} c_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} 0 & 0_{1\times n} \\ 0_{n\times 1} & Z_2 \end{pmatrix}, \begin{pmatrix} c_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

In addition, we have $C_{12} \in M_{1 \times n}(I)$. It suffices to prove that $M_{n+1}(I)$ -unimodular row with elements

$$\left(\begin{array}{cc}1 & C_{12}Z_2\\0_{n\times 1} & D+C_{22}Z_2\end{array}\right) \text{ and } \left(\begin{array}{cc}c_{11} & C_{12}\\C_{21} & C_{22}\end{array}\right)$$

is $M_{n+1}(I)$ -reducible. Write $D + C_{22}Z_2 = UV$, $SU = I_n$, $VT = I_n$, $S, T \in I_n + M_n(I)$. Thus,

$$\begin{pmatrix} 1 & C_{12}Z_2 \\ 0_{n\times 1} & D + C_{22}Z_2 \end{pmatrix} = \begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & U \end{pmatrix} \begin{pmatrix} 1 & C_{12}Z_2 \\ 0_{n\times 1} & V \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & S \end{pmatrix} \begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & U \end{pmatrix} = I_{n+1},$$

$$\begin{pmatrix} 1 & C_{12}Z_2 \\ 0_{n\times 1} & V \end{pmatrix} \begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & T \end{pmatrix} \begin{pmatrix} 1 & -C_{12}Z_2T \\ 0_{n\times 1} & I_2 \end{pmatrix} = I_{n+1},$$

$$\begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & S \end{pmatrix}, \begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & T \end{pmatrix} \begin{pmatrix} 1 & -C_{12}Z_2T \\ 0_{n\times 1} & I_2 \end{pmatrix} \in I_{n+1} + M_{n+1}(I).$$

HUANYIN CHEN

This implies that $\begin{pmatrix} 1 & C_{12}Z_2 \\ 0 & D+C_{22}Z_2 \end{pmatrix} \in \Gamma(M_{n+1}(I))$, as required.

Corollary 3.3. Let I be a right quasi-stable exchange ideal of a ring R. Then every regular $n \times n$ matrix over I is a product of an idempotent $n \times n$ matrix over I and an matrix in $\Gamma(M_n(I))$.

Proof. Since I is a right quasi-stable exchange ideal of R, by Theorem 3.2, $M_n(I)$ is a right quasi-stable exchange ideal of $M_n(R)$. Therefore we complete the proof from Theorem 2.2.

Let FP(I) denote the set of finitely generated projective right *R*-module *P* such that P = PI.

Lemma 3.4. Let I be an exchange ideal of a ring R. If $P \in FP(I)$. Then there exist idempotents $e_1, \ldots, e_n \in I$ such that $P \cong e_1R \oplus \cdots \oplus e_nR$.

Proof. See [1, Proposition 1.5].

Lemma 3.5. Let I be a quasi-stable exchange ideal of a ring R. For any regular $a, b \in I$, $aR \cong bR$ implies that $a = w_1bw_2$ for some $w_1, w_2 \in \Gamma(I)$.

Proof. Suppose that $\psi : aR \cong bR$. Then one easily checks that $Ra = R\psi(a)$ and $\psi(a)R = bR$. As $a \in I$, we have $\psi(a) \in Ra \subseteq I$. Since I is a right quasistable ideal, it follows by Proposition 2.6 that there exists $w_2 \in \Gamma(I)$ such that $bw_2 = \psi(a)$. Likewise, we have $w_1 \in \Gamma(I)$ such that $a = w_1\psi(a)$. Therefore $a = w_1bw_2$, where $w_1, w_2 \in \Gamma(I)$.

We use A^T to denote the transpose of the matrix A. We now derive the main result of this article.

Theorem 3.6. Let I be a quasi-stable exchange ideal of a ring R. Then every square regular matrix over I admits a diagonal reduction by quasi invertible matrices.

Proof. Given any regular $A \in M_n(I)$, we have an idempotent matrix $E \in M_n(I)$ such that $AR^{n\times 1} = E^{n\times 1}R^{n\times 1}$, where $R^{n\times 1} = \{(x_1,\ldots,x_n)^T \mid x_1,\ldots,x_n \in R\}$. Clearly, $ER^{n\times 1} \in FP(I)$. By Lemma 3.4, there exist idempotents $e_1,\ldots,e_n \in I$ such that $ER^{n\times 1} \cong e_1R \oplus \cdots \oplus e_nR \cong \operatorname{diag}(e_1,\ldots,e_n)R^{n\times 1}$ as right *R*-modules. Set $R^{1\times n} = \{(x_1,\ldots,x_n) \mid x_1,\ldots,x_n \in R\}$. Then $AR^{n\times 1} \bigotimes_R R^{1\times n} \cong \operatorname{diag}(e_1,\ldots,e_n)R^{n\times 1} \bigotimes_R R^{1\times n}$. So $AM_n(R) \cong \operatorname{diag}(e_1,\ldots,e_n)M_n(R)$. Therefore the result follows.

Let I be an ideal of a ring R. We use $TM_n(R)$ to denote the ring of all $n \times n$ lower triangular matrices over R and $TM_n(I)$ to denote the ideal of all $n \times n$ lower triangular matrices over I.

Lemma 3.7. Let I be an ideal of a ring R, and let $n \in \mathbb{N}$. If $u_{ii} \in \Gamma(I)$ $(1 \le i \le n), u_{ij} \in I$ $(j < i, 1 \le i, j \le n)$ and $u_{ij} = 0$ $(i < j, 1 \le i, j \le n)$. Then $(u_{ij})_{n \times n} \in \Gamma(TM_n(I))$.

Proof. Straightforward.

Proposition 3.8. Let I be a right quasi-stable exchange ideal of a ring R, and let $n \in \mathbb{N}$. Then $TM_n(I)$ is a right quasi-stable exchange ideal of $TM_n(R)$.

Proof. Obviously, $TM_n(I)$ is an exchange ideal of $TM_n(R)$. Given

 $a_{ij}, b_{ij} \in I \ (j < i, 1 \le i, j \le n)$. By virtue of Lemma 3.7, we get

$$\begin{pmatrix} a_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ * & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ * & \cdots & x_n \end{pmatrix} + \begin{pmatrix} b_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ * & \cdots & b_n \end{pmatrix} = I_n$$

with $\begin{pmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ * & \cdots & a_n \end{pmatrix}$, $\begin{pmatrix} x_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ * & \cdots & x_n \end{pmatrix} \in TM_n(I)$, then for each $i \ (1 \le i \le n)$ we get $a_{ii}x_{ii} + b_{ii} = 1$ with $a_{ii} \in I, x_{ii}, b_{ii} \in R$. As I is a right quasi-stable ideal, we can find $y_i \in R$ such that $a_{ii} + b_{ii}y_i \in \Gamma(I)$. Clearly, $b_{ii} \in 1 + I$ and

$$\begin{pmatrix} a_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ * & \cdots & a_n \end{pmatrix} + \begin{pmatrix} b_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ * & \cdots & b_n \end{pmatrix} \begin{pmatrix} y_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & y_n \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} + b_{11}y_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ * & \cdots & a_{nn} + b_{nn}y_n \end{pmatrix} \in \Gamma(TM_n(I)),$$

as required.

4. Examples

The aim of this section is to construct several examples of quasi-stable ideals. A natural problem asks that if right quasi-stable ideal is right and left symmetric. So far, we can not answer this question. Now we establish an interesting properties of such ideals, which is an extension of [4, Lemma 14].

Proposition 4.1. Let I be a right quasi-stable ideal of a ring R. Then for any regular $x \in I$, there exist an idempotent $e \in R$, a right invertible $u \in 1 + I$, a left invertible $v \in 1 + I$ such that x = euv.

Proof. Assume that $A = (a_{ij}) \in GL_2(R) \cap \begin{pmatrix} 1+I & 1+I \\ I & 1+I \end{pmatrix}$, where $a_{12} \in \Gamma(I)$. Write $a_{12} = uv, su = 1, vt = 1, s, t \in 1 + I$. Then $sa_{12}t = 1$. Clearly, we have

$$\begin{pmatrix} s & 0 \\ 1 - a_{12}ts & a_{12}t \end{pmatrix} = \begin{pmatrix} a_{12}t & 1 - a_{12}ts \\ 0 & s \end{pmatrix}^{-1}, \begin{pmatrix} sa_{12} & 0 \\ 1 - tsa_{12} & t \end{pmatrix} = \begin{pmatrix} t & 1 - tsa_{12} \\ 0 & sa_{12} \end{pmatrix}^{-1} \in GL_2(I).$$

So we get

$$\begin{pmatrix} s & 0\\ 1-a_{12}ts & a_{12}t \end{pmatrix} A \begin{pmatrix} sa_{12} & 0\\ 1-tsa_{12} & t \end{pmatrix} = \begin{pmatrix} * & 1\\ * & * \end{pmatrix}$$
$$\in GL_2(R) \cap \begin{pmatrix} 1+I & 1+I\\ I & 1+I \end{pmatrix}.$$

We infer that

$$A = \begin{pmatrix} s & 0 \\ 1 - a_{12}ts & a_{12}t \end{pmatrix}^{-1} \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \begin{pmatrix} sa_{12} & 0 \\ 1 - tsa_{12} & t \end{pmatrix}^{-1}.$$

Therefore

$$A^{-1} = \begin{pmatrix} sa_{12} & 0\\ 1 - tsa_{12} & t \end{pmatrix} \begin{pmatrix} * & 1\\ * & * \end{pmatrix}^{-1} \begin{pmatrix} s & 0\\ 1 - a_{12}ts & a_{12}t \end{pmatrix}.$$

From $\binom{*1}{**} \in GL_2(R) \cap \binom{1+I}{I} \stackrel{1+I}{1+I}$, we can find $u \in GL_1(I)$ such that

$$\begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \begin{pmatrix} * & 1 \\ * & * \end{pmatrix} \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ u & 0 \end{pmatrix} = \begin{pmatrix} 0 & u^{-1} \\ 1 & 0 \end{pmatrix}^{-1}$$

where $\begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \in GL_2(R) \cap \begin{pmatrix} 1 & 0 \\ -1+I & 1 \end{pmatrix}$. Thus

$$\begin{pmatrix} * & 1 \\ * & * \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \begin{pmatrix} 0 & u^{-1} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} = \begin{pmatrix} * & u^{-1} \\ * & * \end{pmatrix}$$

So we deduce that

$$A^{-1} = \begin{pmatrix} sa_{12} & 0\\ 1 - tsa_{12} & t \end{pmatrix} \begin{pmatrix} * & u^{-1}\\ * & * \end{pmatrix} \begin{pmatrix} s & 0\\ 1 - a_{12}ts & a_{12}t \end{pmatrix}$$
$$= \begin{pmatrix} * & sa_{12}u^{-1}a_{12}t\\ * & * \end{pmatrix}.$$

As $u \in 1 + I$, we have $u^{-1} \in 1 + I$. Set $w = sa_{12}u^{-1}a_{12}t$. As $sa_{12}t = 1$, we see that $sa_{12} \in 1 + I$ is right invertible and $u^{-1}a_{12}t \in 1 + I$ is left invertible. Assume that $B = (b_{ij}) \in GL_2(I)$. Write $B^{-1} = (c_{ij})$. Then $B^{-1} \in GL_2(I)$;

Assume that $B = (b_{ij}) \in GL_2(I)$. Write $B^{-1} = (c_{ij})$. Then $B^{-1} \in GL_2(I)$; hence, $c_{12}R + c_{11}R = R$ with $c_{12} \in I$. As I is a right quasi-stable ideal, we can find $y \in R$ such that $c_{12} + c_{11}y \in \Gamma(I)$. Obviously, $y \in 1 + I$, and so

$$B^{-1}\left(\begin{array}{cc}1&y\\0&1\end{array}\right) = \left(\begin{array}{cc}*&c_{12}+c_{11}y*&*\end{array}\right) \in GL_2(R) \cap \left(\begin{array}{cc}1+I&1+I\\I&1+I\end{array}\right).$$

By the consideration above, we can find some $w_1 \in 1 + I$ such that

$$\begin{pmatrix} 1 & -y \\ 0 & 1 \end{pmatrix} B = \begin{pmatrix} B^{-1} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \end{pmatrix}^{-1} = \begin{pmatrix} * & c_{12} + c_{11}y \\ * & * \end{pmatrix}^{-1} = \begin{pmatrix} * & w_1 \\ * & * \end{pmatrix},$$

where w_1 is the product of a right invertible element and a left invertible element $v \in 1 + I$.

Given ax + b = 1 with $a, x \in I, b \in R$, then $\begin{pmatrix} 1 & x \\ -a & b \end{pmatrix} = \begin{pmatrix} 1-xa & x \\ -a & 1 \end{pmatrix}^{-1} \in GL_1(I)$. By the proceeding discussion, we can find $z \in R$ such that $\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ -a & b \end{pmatrix} =$

 $\binom{* w_2}{* *}$, where $w_2 \in 1 + I$ is the product of a right invertible element and a left invertible element $v \in 1 + I$. Therefore $x + zb = w_2$.

For any regular $x \in I$, it follows from xy + (1 - xy) = 1 that $w := x + (1 - xy)z \in 1 + I$ is the product of a right invertible element and a left invertible element $v \in 1 + I$. Set $e = xy \in I$. Then x = xy(x + (1 - xy)z) = ew, where $e = e^2 \in I$ is an idempotent. Therefore we complete the proof. \Box

Recall that an ideal I of a ring R is regular provided that for any $x \in I$ there exists $y \in I$ such that x = xyx. We say that a ring R is right quasi-stable in case it is a right quasi-stable ideal as itself.

Proposition 4.2. Let I be a regular ideal of a ring R. If eRe is a right quasistable ring for all idempotents $e \in I$, then I is a right quasi-stable exchange ideal of R.

Proof. By [1, Example], *I* is an exchange ideal. Given ax + b = 1 with $a \in I, x, b \in R$, then a = aa'a for a $a' \in R$. Set c = a'ax. Then ac + b = 1 with $a, c \in I, b \in 1 + I$. As $a, c, 1 - b \in I$. In view of [7, Lemma 3.2], there exists an idempotent $e \in I$ such that $a, x, 1 - b \in eRe$. Hence, (1 - b)(1 - e) = 0, and so b(1 - e) = 1 - e. In addition, (1 - b)e = 1 - b; hence, b = be + 1 - e. Thus, ax + be = e. This implies that $be \in eRe$, and so ebe = be. Since ax + ebe = e, by hypothesis, we can find some $u, v, s, t \in eRe$ such that a + ebeye = uv, su = e, vt = e for a $y \in R$. Thus, a + beye + 1 - e = (u + 1 - e)(v + 1 - e), and so a + b(eye + 1 - e) = (u + 1 - e)(v + 1 - e), where (s + 1 - e)(u + 1 - e) = 1, (v + 1 - e)(t + 1 - e) = 1 and $s + 1 - e, t + 1 - e \in 1 + I$. Therefore *I* is a right quasi-stable ideal of *R*, as desired. □

Corollary 4.3. Let I be a regular ideal of a ring R. If aR + bR = R with $a \in 1 + I, b \in R$ implies that there exists $y \in R$ such that $a + by \in R$ is right or left invertible, then I is a quasi-stable exchange ideal of R.

Proof. Let $e \in I$ be an idempotent. In view of [5, Lemma 4.1], eRe is one-sided unit-regular. For any $x \in eRe$, by [3, Theorem 4], there exist an idempotent $f \in eRe$ and a right or left $u \in eRe$ such that x = eu. This implies that eRe is a right quasi-stable ring from Theorem 2.2. According to Proposition 4.2, I is a right quasi-stable exchange ideal. By the symmetry of one-sided unit-regularity, we establish the result.

Recall that an ideal I of a regular ring R satisfies the comparability axiom provided that for any $x, y \in I$, either $xR \leq yR$ or $yR \leq xR$ (cf. [10]). Let Ibe an ideal of a regular ring R. If I satisfies the comparability axiom, we note that aR + bR = R with $a \in 1 + I, b \in R$ implies that $a + by \in R$ is right or left invertible for a $y \in R$.

Corollary 4.4. Let I be a regular ideal of a ring R. If I satisfies the comparability axiom, then I is quasi-stable.

Proof. Clearly, aR + bR = R with $a \in 1 + I, b \in R$ implies that $a + by \in R$ is right or left invertible. Therefore we complete the proof by Corollary 4.3. \Box

By [8, Corollary 9.15], every regular, right self-injective ring satisfies general comparability. We now extend this result to right injective ideals of regular rings.

Proposition 4.5. Let I be a regular ideal of a ring R. If I is an injective right R-module, then I is a quasi-stable ideal of R.

Proof. Since I is regular, I is an exchange ideal. As I is injective, there exists a splitting exact sequence $0 \to I \hookrightarrow R \to R/I \to 0$. Thus, we have a right *R*-module $C \cong R/I$ such that $R = I \oplus C$. Thus, I = eR for some idempotent $e \in I$. Let $f \in I$ be an idempotent. Then we have an inclusion $i : fR \hookrightarrow eR$. Construct a R-morphism $\varphi : eR \to fR$ given by $\varphi(er) = fer$ for any $r \in R$. It is easy to verify that $\varphi i = 1_{fR}$. This implies that the exact sequence $0 \rightarrow$ $fR \hookrightarrow eR \to eR/fR \to 0$ splits. Thus, we have a right *R*-module $D \cong eR/fR$ such that $eR = fR \oplus D$. Since eR is injective, so is fR. For any $m \in Z(fR)$, there exists some $z \in R$ such that m = mzm. Hence, r(m) = (1 - zm)R. As $r(m) \bigcap zmR = 0$, we get zmR = 0; hence, m = mzm = 0. That is, Z(fR) = 0, i.e., fR is nonsingular. In view of [8, Corollary 1.23], $fRf \cong \operatorname{End}_R(fR)$ is a regular, right self-injective ring. According to [8, Corollary 9.15], eRe satisfies general comparability. Let $x \in fRf$, we can find an idempotent $g \in fRf$ and a related unit $w \in fRf$ such that x = qw. As $w \in fRf$ is a related unit, there exists an idempotent $g \in fRf$ such that $gw \in g(fRf)$ is right invertible and $(f-g)w \in (f-g)(fRf)$ is left invertible. Thus, w = ((f-g)w+g)(gw+f-g). According to Theorem 2.2, eRe is a right quasi-stable ring. According to Proposition 4.2, I is a right quasi-stable ideal. Analogously, we show that I is a left quasi-stable ideal. Therefore I is quasi-stable, as desired. \square

Let R be a regular ring, and let $a \in R$. If RaR is injective, it follows from Proposition 4.5 and Theorem 2.2 that a is the product of an idempotent, a left invertible element and a right invertible element.

Example 4.6. Let R be regular, and let

 $I = \{ x \in R \mid xR \text{ is injective} \}.$

Then I is a quasi-stable ideal.

Proof. It is directly proved that I is an ideal of R. For any $a \in I$, there exists an idempotent $e \in I$ such that $a \in eRe$ from [6, Lemma 3.2]. As eR is injective, it follows from [8, corollary 1.23] that eRe is a regular, right self-injective ring. Thus, it satisfies related comparability. Hence, there exists an idempotent $f \in eRe$ and a related unit $w \in ere$ such that a = eu. This implies that a = e(u + 1 - e), where $e \in I$ is an idempotent and $u + 1 - e \in \Gamma(I)$. According to Theorem 2.2, I is a right quasi-stable ideal. Similarly, we show that I is a left quasi-injective ideal, as asserted.

5. Directly finite ideals

We say that an ideal I of a ring R is directly finite provided that for any $a, b \in I$, (1 + a)(1 + b) = 1 implies that (1 + b)(1 + a) = 1. An ideal I of a ring R is said to be of bounded index provided that there exists some $n \in \mathbb{N}$ such that $x^n = 0$ for any nilpotent element $x \in I$. Let R be a regular ring, and let $I = \{x \in R \mid \operatorname{End}_R(xR) \text{ is of bounded index}\}$. Then I is a directly finite, quasi-stable exchange ideal.

Lemma 5.1. Let I be a directly finite, right quasi-stable exchange ideal of a ring R. Suppose that $AX + B = I_n$ with $A, X \in M_n(I), B \in M_n(R)$. Then

- (1) There exists some $Y \in M_n(R)$ such that $A + BY \in GL_n(I)$.
- (2) There exists some $Z \in M_n(R)$ such that $X + ZB \in GL_n(I)$.

Proof. (1) Since I is directly finite, one easily checks that $\Gamma(I) = GL_1(I)$. By iteration of the process of Theorem 3.2 and replacing the elements in $\Gamma(I)$ by invertible elements in 1 + I, we can find some $Y \in M_n(R)$ such that $A + BY \in GL_n(I)$.

(2) By (1), there is $Y \in M_n(R)$ such that $A + BY \in GL_n(I)$. In view of Lemma 2.4, one directly verifies that $(X + (X_n - XY)(A + BY)^{-1}B)^{-1} = A + Y(I_n - XA)$. Check $Z = (X_n - XY)(A + BY)^{-1}$. Then $X + ZB \in GL_n(I)$, as asserted.

Theorem 5.2. Let I be a directly finite, right quasi-stable exchange ideal of a ring R. Then for any regular $A \in M_n(I)$ there exist $U, V \in GL_n(I)$ such that $UAV = \text{diag}(e_1, \ldots, e_n)$ for some idempotents $e_1, \ldots, e_n \in I$.

Proof. Given any regular matrix $A \in M_n(I)$, there exists $E = E^2 \in M_n(I)$ such that $AM_n(R) = EM_n(R)$. Similarly to Theorem 3.4, we have idempotents $e_1, \ldots, e_n \in I$ such that $\varphi : AM_n(R) \cong \operatorname{diag}(e_1, \ldots, e_n)M_n(R)$. Then $M_n(R)A = M_n(R)\varphi(A), \varphi(A)M_n(R) = \operatorname{diag}(e_1, \ldots, e_n)M_n(R)$. One directly verifies that there exist some $X, Y \in M_n(I)$ such that $XA = \varphi(A)$ and $A = Y\varphi(A)$. Since $YX + (I_n - YX) = I_n$, it follows by Lemma 5.1 that there exists some $Z \in M_n(R)$ such that $U := X + Z(I_n - YX) \in GL_n(I)$. Hence $UA = (X + Z(I_n - YX))A = XA = \varphi(A)$. Likewise, we can find some $V \in GL_n(I)$ such that $\varphi(A)V = \operatorname{diag}(e_1, \ldots, e_n)$. Therefore UAV = $\operatorname{diag}(e_1, \ldots, e_n)$, as asserted. \Box

Let I be an ideal of a ring R. Set $B(I) = \{e \in I \mid e = e^2 \text{ and } ex = xe \text{ for any } x \in I\}$. We say that I is an abelian ideal in case every idempotent in I is in B(I). For example, every semicommutative ideal of a ring is an abelian ideal.

Corollary 5.3. Let I be an abelian exchange ideal of a ring R. Then for any regular $A \in M_n(I)$ there exist $U, V \in GL_n(I)$ such that $UAV = \text{diag}(e_1, \ldots, e_n)$ for some idempotents $e_1, \ldots, e_n \in I$.

Proof. For any regular $x \in I$, we have $y \in I$ such that x = xyx and y = yxy. Since I is an abelian exchange ideal of R, we have $x = x^2y = yx^2$, and then x = xy(1 + x - xy). Set e = xy and u = 1 + x - xy. Then $e = e^2 \in I$ and u(1 + y - xy) = 1. Hence $u \in \Gamma(I)$. Thus I is a right quasi-stable ideal by Theorem 2.2.

Suppose that (1-x)(1-y) = 1 with $x, y \in I$; hence, $(1-y)(1-x) \in 1+I$ is an idempotent. Since I is an abelian ideal of R, (1-(1-y)(1-x))x = x(1-(1-y)(1-x)). Furthermore, we get (1-y)(1-x)(1-x) = (1-x)(1-y)(1-x). So (1-y)(1-x) = (1-y)(1-x)(1-x)(1-y) = (1-x)(1-y)(1-x)(1-y) = 1. That is, I is a directly finite ideal. Therefore we complete the proof from Theorem 5.2.

Recall that an ideal I of a ring R is periodic provided that for any $x \in I$, there exists $n(x) \in \mathbb{N}$ such that $x = x^{n(x)+1}$.

Corollary 5.4. Let I be a periodic ideal of a ring R. Then for any regular $A \in M_n(I)$ there exist $U, V \in GL_n(I)$ such that $UAV = \text{diag}(e_1, \ldots, e_n)$ for some idempotents $e_1, \ldots, e_n \in I$.

Proof. For any idempotent $e \in I$ and any idempotent $x \in I$, we have $(ex - exe)^2 = 0$. So we deduce that ex = exe because I is an periodic ideal. Likewise, we have xe = exe; hence, ex = xe. This means that I is an abelian ideal of R. On the other hand, I is a strongly π -regular ideal; hence, it is an exchange ideal. So the proof is true by Corollary 5.3.

Example 5.5. Let V be a countably generated infinite-dimensional vector space over a division D, and let $(a_{ij}) \in M_n(\operatorname{End}_D(V))$ with all $\dim_D(a_{ij}V) < \infty$. Then there exist $U, V \in GL_n(\operatorname{End}_D(V))$ such that $UAV = \operatorname{diag}(e_1, \ldots, e_n)$ for some idempotents $e_1, \ldots, e_n \in \operatorname{End}_D(V)$.

Proof. Let $I = \{x \in \operatorname{End}_D(V) \mid \dim_D(xV) < \infty\}$. Obviously, I is an ideal of $\operatorname{End}_D(V)$. For any idempotent $e \in I$, eRe is unit-regular; hence, I has stable range one. This implies that I is directly finite. In view of Proposition 2.5, I is a quasi-stable ideal. According to Theorem 5.2, the result follows.

Let R be an exchange ring, and let $(a_{ij}) \in M_n(R)$. If each $Ra_{ij}R$ has stable range one, analogously, we conclude that there exist $(u_{ij}), (v_{ij}) \in GL_n(R)$ such that $(u_{ij})(a_{ij})(v_{ij}) = \text{diag}(e_1, \ldots, e_n)$ for some idempotents $e_1, \ldots, e_n \in R$. In addition, $Ru_{ij}R, Rv_{ij}R$ $(i \neq j), R(1 - u_{ii})R$ and $R(1 - v_{ii})R$ all have stable range one.

References

- [1] P. Ara, Extensions of exchange rings, J. Algebra 197 (1997), no. 2, 409-423.
- [2] P. Ara, K. R. Goodearl, K. C. O'Meara, and E. Pardo, *Diagonalization of matrices over regular rings*, Linear Algebra Appl. **265** (1997), 147–163.
- [3] H. Chen, Elements in one-sided unit regular rings, Comm. Algebra 25 (1997), no. 8, 2517–2529.

- [4] _____, Generalized stable regular rings, Comm. Algebra **31** (2003), no. 10, 4899–4910.
- [5] _____, 2 × 2 invertible matrices over weakly stable rings, J. Korean Math. Soc. 46 (2009), no. 2, 257–269.
- [6] H. Chen and M. Chen, Generalized ideal-stable regular rings, Comm. Algebra 31 (2003), no. 10, 4989–5001.
- [7] _____, On products of three triangular matrices over associative rings, Linear Algebra Appl. **387** (2004), 297–311.
- [8] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, San Francisco, Melbourne, 1979; second ed., Krieger, Malabar, Fl., 1991.
- T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 3 (2004), no. 3, 301–343.
- [10] D. Lu, Q. Li, and W. Tong, Comparability, stability, and completions of ideals, Comm. Algebra 32 (2004), no. 7, 2617–2634.
- [11] K. C. O'Meara and R. Raphael, Uniform diagonalisation of matrices over regular rings, Algebra Universalis 45 (2000), 383–405.
- [12] F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank zero, J. Reine Angew. Math. 522 (2000), 51–62.

DEPARTMENT OF MATHEMATICS HANGZHOU NORMAL UNIVERSITY HANGZHOU 310036, P. R. CHINA *E-mail address:* huanyinchen@yahoo.cn