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ON QUASI-STABLE EXCHANGE IDEALS

Huanyin Chen

Abstract. We introduce, in this article, the quasi-stable exchange ideal
for associative rings. If I is a quasi-stable exchange ideal of a ring R, then
so is Mn(I) as an ideal of Mn(R). As an application, we prove that every
square regular matrix over quasi-stable exchange ideal admits a diagonal
reduction by quasi invertible matrices. Examples of such ideals are given
as well.

1. Introduction

Following Ara (cf. [1]), an ideal I of a ring R is an exchange ideal provided
that for every x ∈ I there exist an idempotent e ∈ I and elements r, s ∈ I
such that e = xr = x + s − xs. Clearly, an ideal I of a ring R is an exchange
ideal if and only if for any x ∈ I, there exists an idempotent e ∈ xR such that
1−e ∈ (1−x)R. Exchange ideal plays a key role in the direct sum decomposition
theory of exchange rings. Many authors have studied such ideals, e.g., [1] and
[12].

So as to investigate directly infinite rings, we introduce a new class of ex-
change ideals, i.e., quasi-stable exchange ideals of a ring R. If I is a quasi-stable
exchange ideal of a ring R, we will show that Mn(I) is a quasi-stable exchange
ideal of Mn(R). As is well known, every square matrix over a unit-regular ring
admits a diagonal reduction. Ara et. al. extended this result and proved that
every square regular matrix over a separative exchange ring admits a diagonal
reduction by invertible matrices (cf. [2]). It is interesting to investigate diag-
onal reduction of matrices over an ideal of a ring R even though there exist
some square matrices over R which can not be reduced. As an application, we
prove that every square regular matrix over quasi-stable exchange ideal admits
a diagonal reduction by quasi invertible matrices. These also give nontrivial
generalizations of [4, Theorem 16] and [6, Theorem 11].

Throughout, all rings are associative with identity, all ideals are two-sided
ideals and all modules are right unitary modules. We use Mn(R) to denote
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the ring of n × n matrices over R with identity In. GLn(R) denotes the n-
dimensional general linear group of R. Set GLn(I) = GLn(R)

⋂ (
In +Mn(I)

)
.

An element x ∈ R is regular provided that x = xyx for a y ∈ R. Γ(I) stands for
the set of all products of a left invertible element and a right invertible element
in 1 + I, i.e., {uv ∈ R | ∃ s, t ∈ 1 + I such that su = 1, vt = 1}.

2. Equivalent characterizations

Definition 2.1. Let I be an ideal of a ring R. We say that I is a right
quasi-stable ideal if aR + bR = R with a ∈ I, b ∈ R implies that there exists
y ∈ R such that a + by ∈ Γ(I). We say that I is a left quasi-stable ideal if
Ra + Rb = R with a ∈ I, b ∈ R implies that there exists z ∈ R such that
a + zb ∈ Γ(I). An ideal I of a ring R is a quasi-stable ideal in case it is both
right and left quasi-stable ideal.

Let J(R) be the Jacobson radical of rings R. If ax + b = 1 with a ∈
J(R), x, b ∈ R, then b ∈ U(R). Hence, a+ b · b−1 = 1+J(R) ∈ Γ

(
J(R)

)
. Thus,

J(R) is a right quasi-stable exchange ideal. The purpose of this section is to
investigate several equivalent characterizations of right quasi-stable ideals. The
left quasi-stable ideals have analogous results.

Theorem 2.2. Let I be an exchange ideal of a ring R. Then the following are
equivalent:

(1) I is a right quasi-stable ideal.
(2) Every element in I is a product of an idempotent in I and an element

in Γ(I).

Proof. (1)⇒(2) Given any x ∈ I, there exists y ∈ I such that x = xyx. Since
xy+(1−xy) = 1 with x ∈ I, we have z ∈ R such that x+(1−xy)z = w ∈ Γ(I).
So x = xyx = xy

(
x+ (1− xy)z

)
= ew, where e = xy ∈ I is an idempotent.

(2)⇒(1) Suppose that ax + b = 1 with a ∈ I, x, b ∈ R. Then b ∈ 1 + I.
Since I is an exchange ideal of R, by [1, Lemma 1.1], we have an idempotent
e = bs and 1 − e = (1 − b)t for some s, t ∈ R. Hence axt + e = 1, and then
(1 − e)axt + e = 1. So (1 − e)a ∈ I is regular. Thus we have an idempotent
f ∈ I and a w ∈ Γ(I) such that (1 − e)a = fw. So fwxt + e = 1, and then
fwxt(1− f) + e(1− f) = 1− f . We infer that f + e(1− f) = 1− fwxt(1− f).
Hence, (1 − e)a + e(1 − f)w = fw + e(1 − f)w =

(
1 − fwxt(1 − f)

)
w. As a

result, a+ bs
(
(1− f)w − a

)
=

(
1 + fwxt(1− f)

)−1
w ∈ Γ(I). Therefore I is a

right quasi-stable ideal. ¤

Corollary 2.3. Let I be an exchange ideal of a ring R. Then the following
are equivalent:

(1) I is a right quasi-stable ideal.
(2) Whenever ax + b = 1 with a, x ∈ I, b ∈ 1 + I, there exists y ∈ R such

that a+ by ∈ Γ(I).
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Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (1) Let x ∈ I be regular. Then we have y ∈ I such that x = xyx. Since

xy+(1−xy) = 1 with x, y ∈ I, 1−xy ∈ 1+I, by hypothesis, there exists z ∈ R
such that x+(1−xy)z = w ∈ Γ(I). Thus, x = xyx = xy

(
x+(1−xy)z) = ew,

where e = xy ∈ I is an idempotent. According to Theorem 2.2, we obtain the
result. ¤

Recall that an ideal I of a ring R has stable range one provided that aR +
bR = R with a ∈ I, b ∈ R implies that there exists y ∈ R such that a + by ∈
GL1(R). We recall a simple known result.

Lemma 2.4. Given ax+ b = 1, a, x, b ∈ R, then the following hold:
(1) If u(a+by) = 1, then

(
x+(1−xy)ub)(a+y(1−xa)) = 1. If (a+by)u = 1,

then
(
a+ y(1− xa)

)(
x+ (1− xy)ub

)
= 1.

(2) If (x+zb)v = 1, then
(
x+(1−xa)z)(a+bv(1−za)) = 1. If v(x+zb) = 1,

then
(
a+ bv(1− za)

)(
x+ (1− xa)z

)
= 1.

Proof. Straightforward. ¤

Proposition 2.5. Let I be an exchange ideal of a ring R. If I has stable range
one, then I is a right quasi-stable ideal

Proof. Assume that ax+b = 1 with a, x ∈ I, b ∈ 1+I. Then
(
a+(1−a)b)(x+

b)+(1−a)b(1−(x+b)
)

= 1, where a+(1−a)b ∈ 1+I. Since I has stable range
one, we have y ∈ R such that

(
a+ (1− a)b) + (1− a)b(1− (x+ b)

)
y ∈ GL1(I).

That is, a+(1−a)b(1+(1−(x+b))y
) ∈ GL1(I). As a(x+b)+(1−a)b = 1, we can

find z ∈ R such that x+b+z(1−a)b ∈ GL1(I), i.e., x+
(
1+z(1−a))b ∈ GL1(I).

By using Lemma 2.4 again, we have t ∈ R such that a+bt ∈ GL1(I). Therefore
I is a right quasi-stable ideal, as desired. ¤

It follows from Lemma 2.4 that stable range one for ideals is right and left
symmetric. Recall that a ring R is perfect in case R/J(R) is a division ring
and idempotents lift modulo J(R). Consequently, every ideal of a perfect ring
is quasi-stable.

Proposition 2.6. Let I be an exchange ideal of a ring R. Then the following
are equivalent:

(1) I is a right quasi-stable ideal.
(2) For any regular a, b ∈ I, aR = bR implies that there exists w ∈ Γ(I)

such that a = bw.

Proof. (1) ⇒ (2) Suppose that aR = bR with regular a, b ∈ I. Then we have
x, y ∈ R such that ax = b and a = by. Assume that b = bb′b. Replacing b′by
with y, we may assume that y ∈ I. From yx + (1 − yx) = 1, we have z ∈ R
such that y+ (1− yx)z = w ∈ Γ(I). Hence a = by = b

(
y+ (1− yx)z) = bw, as

required.
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(2) ⇒ (1) For any regular x ∈ I, there exists an idempotent e ∈ I such that
xR = eR. So x = ew for some w ∈ Γ(I). Therefore I is a right quasi-stable
ideal by Theorem 2.2. ¤

3. Extensions of matrices

A natural problem asks whether quasi-stable exchange ideal of a ring is
invariant under matrix extension. In this section, we give this problem an
affirmative answer. In the sequel, we say that the pair (a, b) is an I-unimodular
row in case ax+ by = 1 for some x ∈ I, y ∈ R. The I-unimodular row (a, b) is
called I-reducible if there exists z ∈ R such that a+ bz ∈ Γ(I).

Lemma 3.1. Let (a, b) be a I-unimodular row in a ring R. Let u, v ∈ GL1(I)
and c ∈ R. Then (vau+ vbc, vb) is also I-unimodular row. Furthermore, (a, b)
is I-reducible if and only if so is (vau+ vbc, vb).

Proof. Since (a, b) is an I-unimodular row in a ring R, we have x ∈ I, y ∈ R
such that ax+ by = 1. Hence (vau+ vbc)(u−1xv−1) + vb(y − cu−1x)v−1 = 1.
Clearly, u−1xv−1 ∈ I. So (vau+ vbc, vb) is an I-unimodular row. Assume that
(a, b) is I-reducible. Then we have y ∈ R such that a + by ∈ Γ(I). Choose
z = yu− c. Then we see that (vau+ vbc) + (vb)z = v(a+ by)u ∈ Γ(I); hence,
(au + vbc, vb) is I-reducible. Conversely, assume that there exists z ∈ R such
that vau+vbc+vbz ∈ Γ(I). Then v

(
a+b(c+z)u−1

)
u ∈ Γ(I). As u, v ∈ GL1(I),

a+ b(c+ z)u−1 ∈ Γ(I). Therefore (a, b) is I-reducible. ¤
Theorem 3.2. Let I be a right quasi-stable exchange ideal of a ring R. Then
Mn(I) is a right quasi-stable exchange ideal of Mn(R) for all n ∈ N.

Proof. By [1, Theorem 1.4], Mn(I) is an exchange ideal of Mn(R). We now
induct on n. Assume inductively that the result holds for n. It will suffice to
show that the result holds for n+ 1. Suppose that
(∗)



a11 a12 · · · a1(n+1)

a21 a22 · · · a2(n+1)

...
...

. . .
...

a(n+1)1 a(n+1)2 · · · a(n+1)(n+1)







b11 b12 · · · b1(n+1)

b21 b22 · · · b2(n+1)

...
...

. . .
...

b(n+1)1 b(n+1)2 · · · b(n+1)(n+1)




+




c11 c12 · · · c1(n+1)

c21 c22 · · · c2(n+1)

...
...

. . .
...

c(n+1)1 c(n+1)2 · · · c(n+1)(n+1)


 = In+1

in Mn+1(R), where


a11 · · · a1(n+1)

a21 · · · a2(n+1)

...
. . .

...
a(n+1)1 · · · a(n+1)(n+1)


 ,




b11 · · · b1(n+1)

b21 · · · b2(n+1)

...
. . .

...
b(n+1)1 · · · b(n+1)(n+1)


 ∈Mn+1(I).
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Then a11b11 + a12b21 + · · · + a1(n+1)b(n+1)1 + c11 = 1 with a11 ∈ I. As I is a
quasi-stable exchange ideal of R, we have z1 ∈ R such that a11 +(a12b21 + · · ·+
a1nbn1 + c11)z1 ∈ Γ(I). Since




1 0 0 · · · 0
b21z1 1 0 · · · 0
b31z1 0 1 · · · 0

...
...

...
. . .

...
b(n+1)1z1 0 0 · · · 1



∈ GLn+1(I),

by virtue of Lemma 3.1, (∗) is Mn+1(I)-reducible if and only if this is so for
the Mn+1(I)-unimodular row with elements




a11 a12 a13 · · · a1(n+1)

a21 a22 a23 · · · a2(n+1)

a31 a32 a33 · · · a3(n+1)

...
...

...
. . .

...
a(n+1)1 a(n+1)2 a(n+1)3 · · · a(n+1)(n+1)







1 0 0 · · · 0
b21z1 1 0 · · · 0
b31z1 0 1 · · · 0

...
...

...
. . .

...
b(n+1)1z1 0 0 · · · 1




+




c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

...
. . .

...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)







z1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




and



c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

...
. . .

...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)



.

So we assume that a11 ∈ Γ(I). From c21, . . . , c(n+1)1 ∈ I, we have aij ∈ I
(either i 6= 1 or j 6= 1) in (∗). Write a11 = uv, su = 1, vt = 1, s, t ∈ 1 + I. Then
sa11t = 1, and so




s 0 0 · · · 0
1− a11ts a11t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
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×




a11 a12 a13 · · · a1(n+1)

a21 a22 a23 · · · a2(n+1)

a31 a32 a33 · · · a3(n+1)

...
...

...
. . .

...
a(n+1)1 a(n+1)2 a(n+1)3 · · · a(n+1)(n+1)




×




t 1− tsa11 0 · · · 0
0 sa11 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




=




1 d12 d13 · · · d1(n+1)

d21 d22 d23 · · · d2(n+1)

d31 d32 d33 · · · d3(n+1)

...
...

...
. . .

...
d(n+1)1 d(n+1)2 d(n+1)3 · · · d(n+1)(n+1)



,

where



s 0 0 · · · 0
1− a11ts a11t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




=




a11t 1− a11ts 0 · · · 0
0 s 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




−1

,




t 1− tsa11 0 · · · 0
0 sa11 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




=




sa11 0 0 · · · 0
1− tsa11 t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




−1

∈ GLn+1(I).

Thus (∗) isMn+1(I)-reducible if and only if this is so for theMn+1(I)-unimodul-
ar row with elements



1 d12 d13 · · · d1(n+1)

d21 d22 d23 · · · d2(n+1)

d31 d32 ∗ · · · ∗
...

...
...

. . .
...

d(n+1)1 d3(n+1) ∗ · · · d(n+1)(n+1)



,




s 0 0 · · · 0
1− a11ts a11t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1







c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

...
. . .

...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)



.
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In (∗), we may assume that dij ∈ I (either 3 ≤ i ≤ n + 1 or 3 ≤ j ≤ n + 1)
and d12 = sa11(1 − tsa11) + sa12sa11, d21 = (1 − a11ts)a11t + a11ta21t, d22 =(
(1− a11ts)a11 + a11ta21

)
(1− tsa11) +

(
(1− a11ts)a12 + a11ta22

)
sa11 ∈ I. By

Lemma 3.1 again, (∗) is Mn+1(I)-reducible if and only if this is so for the
Mn+1(I)-unimodular row with elements




1 0 0 · · · 0
0 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗



,




1 0 0 · · · 0
∗ 1 0 · · · 0
∗ 0 1 · · · 0
...

...
...

. . .
...

∗ 0 0 · · · 1







s 0 0 · · · 0
1− a11ts a11t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1







c11 c12 c13 · · · c1(n+1)

c21 c22 c23 · · · c2(n+1)

c31 c32 c33 · · · c3(n+1)

...
...

...
. . .

...
c(n+1)1 c(n+1)2 c(n+1)3 · · · c(n+1)(n+1)



.

So we may assume that a11 = 1, a1i = 0 = ai1 (2 ≤ i ≤ n + 1) in (∗).
Furthermore, we may assume that (∗) is in the following form:

(
1 01×n

0n×1 D

) (
e11 E12

E21 E22

)
+

(
c11 C12

C21 C22

)
=

(
1 0
0 In

)
,

D ∈ Mn(I) and
(

e11 E12
E21 E22

) ∈ Mn+1(I). This infers that DE22 + C22 = In. By
the induction hypothesis, Mn(I) is a quasi-stable exchange ideal of Mn(R). So
we can find Z2 ∈ Mn(R) such that D + C22Z2 ∈ Γ

(
Mn(I)

)
. Thus, we pass to

the Mn+1(I)-unimodular row with elements
(

1 01×n

0n×1 D

)
+

(
c11 C12

C21 C22

)(
0 01×n

0n×1 Z2

)
,

(
c11 C12

C21 C22

)
.

In addition, we have C12 ∈ M1×n(I). It suffices to prove that Mn+1(I)-
unimodular row with elements(

1 C12Z2

0n×1 D + C22Z2

)
and

(
c11 C12

C21 C22

)

is Mn+1(I)-reducible. Write D + C22Z2 = UV , SU = In, V T = In, S, T
∈ In +Mn(I). Thus,
(

1 C12Z2

0n×1 D + C22Z2

)
=

(
1 01×n

0n×1 U

)(
1 C12Z2

0n×1 V

)
,

(
1 01×n

0n×1 S

)(
1 01×n

0n×1 U

)
= In+1,

(
1 C12Z2

0n×1 V

)(
1 01×n

0n×1 T

)(
1 −C12Z2T

0n×1 I2

)
= In+1,

(
1 01×n

0n×1 S

)
,

(
1 01×n

0n×1 T

)(
1 −C12Z2T

0n×1 I2

)
∈ In+1+Mn+1(I).
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This implies that
(

1 C12Z2
0 D+C22Z2

) ∈ Γ
(
Mn+1(I)

)
, as required. ¤

Corollary 3.3. Let I be a right quasi-stable exchange ideal of a ring R. Then
every regular n × n matrix over I is a product of an idempotent n × n matrix
over I and an matrix in Γ

(
Mn(I)

)
.

Proof. Since I is a right quasi-stable exchange ideal of R, by Theorem 3.2,
Mn(I) is a right quasi-stable exchange ideal of Mn(R). Therefore we complete
the proof from Theorem 2.2. ¤

Let FP (I) denote the set of finitely generated projective right R-module P
such that P = PI.

Lemma 3.4. Let I be an exchange ideal of a ring R. If P ∈ FP (I). Then
there exist idempotents e1, . . . , en ∈ I such that P ∼= e1R⊕ · · · ⊕ enR.

Proof. See [1, Proposition 1.5]. ¤
Lemma 3.5. Let I be a quasi-stable exchange ideal of a ring R. For any
regular a, b ∈ I, aR ∼= bR implies that a = w1bw2 for some w1, w2 ∈ Γ(I).

Proof. Suppose that ψ : aR ∼= bR. Then one easily checks that Ra = Rψ(a)
and ψ(a)R = bR. As a ∈ I, we have ψ(a) ∈ Ra ⊆ I. Since I is a right quasi-
stable ideal, it follows by Proposition 2.6 that there exists w2 ∈ Γ(I) such that
bw2 = ψ(a). Likewise, we have w1 ∈ Γ(I) such that a = w1ψ(a). Therefore
a = w1bw2, where w1, w2 ∈ Γ(I). ¤

We use AT to denote the transpose of the matrix A. We now derive the
main result of this article.

Theorem 3.6. Let I be a quasi-stable exchange ideal of a ring R. Then every
square regular matrix over I admits a diagonal reduction by quasi invertible
matrices.

Proof. Given any regular A ∈ Mn(I), we have an idempotent matrix E ∈
Mn(I) such that ARn×1 = En×1Rn×1, where Rn×1 = {(x1, . . . , xn)T | x1, . . . ,
xn ∈ R}. Clearly, ERn×1 ∈ FP (I). By Lemma 3.4, there exist idempotents
e1, . . . , en ∈ I such that ERn×1 ∼= e1R ⊕ · · · ⊕ enR ∼= diag(e1, . . . , en)Rn×1

as right R-modules. Set R1×n = {(x1, . . . , xn) | x1, . . . , xn ∈ R}. Then
ARn×1

⊗
R

R1×n ∼= diag(e1, . . . , en)Rn×1
⊗
R

R1×n. So AMn(R) ∼= diag(e1, . . . ,

en)Mn(R). Therefore the result follows. ¤
Let I be an ideal of a ring R. We use TMn(R) to denote the ring of all n×n

lower triangular matrices over R and TMn(I) to denote the ideal of all n × n
lower triangular matrices over I.

Lemma 3.7. Let I be an ideal of a ring R, and let n ∈ N. If uii ∈ Γ(I) (1 ≤
i ≤ n), uij ∈ I (j < i, 1 ≤ i, j ≤ n) and uij = 0 (i < j, 1 ≤ i, j ≤ n). Then
(uij)n×n ∈ Γ

(
TMn(I)

)
.
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Proof. Straightforward. ¤

Proposition 3.8. Let I be a right quasi-stable exchange ideal of a ring R, and
let n ∈ N. Then TMn(I) is a right quasi-stable exchange ideal of TMn(R).

Proof. Obviously, TMn(I) is an exchange ideal of TMn(R). Given



a1 · · · 0
...

. . .
...

∗ · · · an







x1 · · · 0
...

. . .
...

∗ · · · xn


 +




b1 · · · 0
...

. . .
...

∗ · · · bn


 = In

with

(
a1 ··· 0

...
. . .

...
∗ ··· an

)
,

(
x1 ··· 0

...
. . .

...
∗ ··· xn

)
∈ TMn(I), then for each i (1 ≤ i ≤ n) we get

aiixii + bii = 1 with aii ∈ I, xii, bii ∈ R. As I is a right quasi-stable ideal,
we can find yi ∈ R such that aii + biiyi ∈ Γ(I). Clearly, bii ∈ 1 + I and
aij , bij ∈ I (j < i, 1 ≤ i, j ≤ n). By virtue of Lemma 3.7, we get




a1 · · · 0
...

. . .
...

∗ · · · an


 +




b1 · · · 0
...

. . .
...

∗ · · · bn







y1 · · · 0
...

. . .
...

0 · · · yn




=




a11 + b11y1 · · · 0
...

. . .
...

∗ · · · ann + bnnyn


 ∈ Γ

(
TMn(I)

)
,

as required. ¤

4. Examples

The aim of this section is to construct several examples of quasi-stable ideals.
A natural problem asks that if right quasi-stable ideal is right and left symmet-
ric. So far, we can not answer this question. Now we establish an interesting
properties of such ideals, which is an extension of [4, Lemma 14].

Proposition 4.1. Let I be a right quasi-stable ideal of a ring R. Then for any
regular x ∈ I, there exist an idempotent e ∈ R, a right invertible u ∈ 1 + I, a
left invertible v ∈ 1 + I such that x = euv.

Proof. Assume that A = (aij) ∈ GL2(R)∩ (
1+I 1+I

I 1+I

)
, where a12 ∈ Γ(I). Write

a12 = uv, su = 1, vt = 1, s, t ∈ 1 + I. Then sa12t = 1. Clearly, we have
(

s 0
1− a12ts a12t

)
=

(
a12t 1− a12ts
0 s

)−1

,

(
sa12 0

1− tsa12 t

)
=

(
t 1− tsa12

0 sa12

)−1

∈ GL2(I).
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So we get
(

s 0
1− a12ts a12t

)
A

(
sa12 0

1− tsa12 t

)
=

( ∗ 1
∗ ∗

)

∈ GL2(R) ∩
(

1 + I 1 + I
I 1 + I

)
.

We infer that

A =
(

s 0
1− a12ts a12t

)−1 ( ∗ 1
∗ ∗

)(
sa12 0

1− tsa12 t

)−1

.

Therefore

A−1 =
(

sa12 0
1− tsa12 t

)( ∗ 1
∗ ∗

)−1 (
s 0

1− a12ts a12t

)
.

From ( ∗ 1
∗ ∗ ) ∈ GL2(R) ∩ (

1+I 1+I
I 1+I

)
, we can find u ∈ GL1(I) such that

(
1 0
∗ 1

)( ∗ 1
∗ ∗

)(
1 0
∗ 1

)
=

(
0 1
u 0

)
=

(
0 u−1

1 0

)−1

,

where ( 1 0
∗ 1 ) ∈ GL2(R) ∩ (

1 0
−1+I 1

)
. Thus

( ∗ 1
∗ ∗

)−1

=
(

1 0
∗ 1

) (
0 u−1

1 0

)(
1 0
∗ 1

)
=

( ∗ u−1

∗ ∗
)
.

So we deduce that

A−1 =
(

sa12 0
1− tsa12 t

)( ∗ u−1

∗ ∗
) (

s 0
1− a12ts a12t

)

=
( ∗ sa12u

−1a12t
∗ ∗

)
.

As u ∈ 1 + I, we have u−1 ∈ 1 + I. Set w = sa12u
−1a12t. As sa12t = 1, we see

that sa12 ∈ 1 + I is right invertible and u−1a12t ∈ 1 + I is left invertible.
Assume that B = (bij) ∈ GL2(I). Write B−1 = (cij). Then B−1 ∈ GL2(I);

hence, c12R+ c11R = R with c12 ∈ I. As I is a right quasi-stable ideal, we can
find y ∈ R such that c12 + c11y ∈ Γ(I). Obviously, y ∈ 1 + I, and so

B−1

(
1 y
0 1

)
=

( ∗ c12 + c11y
∗ ∗

)
∈ GL2(R) ∩

(
1 + I 1 + I
I 1 + I

)
.

By the consideration above, we can find some w1 ∈ 1 + I such that
(

1 −y
0 1

)
B=

(
B−1

(
1 y
0 1

) )−1 =
( ∗ c12 + c11y
∗ ∗

)−1

=
( ∗ w1

∗ ∗
)
,

where w1 is the product of a right invertible element and a left invertible element
v ∈ 1 + I.

Given ax+ b = 1 with a, x ∈ I, b ∈ R, then
(

1 x
−a b

)
=

(
1−xa x
−a 1

)−1 ∈ GL1(I).
By the proceeding discussion, we can find z ∈ R such that ( 1 z

0 1 )
(

1 x
−a b

)
=
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( ∗ w2∗ ∗ ) , where w2 ∈ 1 + I is the product of a right invertible element and a left
invertible element v ∈ 1 + I. Therefore x+ zb = w2.

For any regular x ∈ I, it follows from xy + (1− xy) = 1 that w := x+ (1−
xy)z ∈ 1 + I is the product of a right invertible element and a left invertible
element v ∈ 1 + I. Set e = xy ∈ I. Then x = xy

(
x + (1 − xy)z

)
= ew, where

e = e2 ∈ I is an idempotent. Therefore we complete the proof. ¤

Recall that an ideal I of a ring R is regular provided that for any x ∈ I there
exists y ∈ I such that x = xyx. We say that a ring R is right quasi-stable in
case it is a right quasi-stable ideal as itself.

Proposition 4.2. Let I be a regular ideal of a ring R. If eRe is a right quasi-
stable ring for all idempotents e ∈ I, then I is a right quasi-stable exchange
ideal of R.

Proof. By [1, Example], I is an exchange ideal. Given ax + b = 1 with a ∈
I, x, b ∈ R, then a = aa′a for a a′ ∈ R. Set c = a′ax. Then ac + b = 1 with
a, c ∈ I, b ∈ 1 + I. As a, c, 1− b ∈ I. In view of [7, Lemma 3.2], there exists an
idempotent e ∈ I such that a, x, 1 − b ∈ eRe. Hence, (1 − b)(1 − e) = 0, and
so b(1− e) = 1− e. In addition, (1− b)e = 1− b; hence, b = be+ 1− e. Thus,
ax+ be = e. This implies that be ∈ eRe, and so ebe = be. Since ax+ ebe = e,
by hypothesis, we can find some u, v, s, t ∈ eRe such that a+ ebeye = uv, su =
e, vt = e for a y ∈ R. Thus, a + beye + 1 − e = (u + 1 − e)(v + 1 − e), and
so a+ b(eye+ 1− e) = (u+ 1− e)(v + 1− e), where (s+ 1− e)(u+ 1− e) =
1, (v + 1 − e)(t + 1 − e) = 1 and s + 1 − e, t + 1 − e ∈ 1 + I. Therefore I is a
right quasi-stable ideal of R, as desired. ¤

Corollary 4.3. Let I be a regular ideal of a ring R. If aR + bR = R with
a ∈ 1 + I, b ∈ R implies that there exists y ∈ R such that a+ by ∈ R is right or
left invertible, then I is a quasi-stable exchange ideal of R.

Proof. Let e ∈ I be an idempotent. In view of [5, Lemma 4.1], eRe is one-sided
unit-regular. For any x ∈ eRe, by [3, Theorem 4], there exist an idempotent
f ∈ eRe and a right or left u ∈ eRe such that x = eu. This implies that eRe
is a right quasi-stable ring from Theorem 2.2. According to Proposition 4.2,
I is a right quasi-stable exchange ideal. By the symmetry of one-sided unit-
regularity, we establish the result. ¤

Recall that an ideal I of a regular ring R satisfies the comparability axiom
provided that for any x, y ∈ I, either xR . yR or yR . xR (cf. [10]). Let I
be an ideal of a regular ring R. If I satisfies the comparability axiom, we note
that aR+ bR = R with a ∈ 1 + I, b ∈ R implies that a+ by ∈ R is right or left
invertible for a y ∈ R.

Corollary 4.4. Let I be a regular ideal of a ring R. If I satisfies the compa-
rability axiom, then I is quasi-stable.
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Proof. Clearly, aR + bR = R with a ∈ 1 + I, b ∈ R implies that a + by ∈ R is
right or left invertible. Therefore we complete the proof by Corollary 4.3. ¤

By [8, Corollary 9.15], every regular, right self-injective ring satisfies general
comparability. We now extend this result to right injective ideals of regular
rings.

Proposition 4.5. Let I be a regular ideal of a ring R. If I is an injective right
R-module, then I is a quasi-stable ideal of R.

Proof. Since I is regular, I is an exchange ideal. As I is injective, there exists
a splitting exact sequence 0 → I ↪→ R → R/I → 0. Thus, we have a right
R-module C ∼= R/I such that R = I ⊕ C. Thus, I = eR for some idempotent
e ∈ I. Let f ∈ I be an idempotent. Then we have an inclusion i : fR ↪→ eR.
Construct a R-morphism ϕ : eR → fR given by ϕ(er) = fer for any r ∈ R.
It is easy to verify that ϕi = 1fR. This implies that the exact sequence 0 →
fR ↪→ eR→ eR/fR→ 0 splits. Thus, we have a right R-module D ∼= eR/fR
such that eR = fR ⊕D. Since eR is injective, so is fR. For any m ∈ Z(fR),
there exists some z ∈ R such that m = mzm. Hence, r(m) = (1 − zm)R. As
r(m)

⋂
zmR = 0, we get zmR = 0; hence, m = mzm = 0. That is, Z(fR) = 0,

i.e., fR is nonsingular. In view of [8, Corollary 1.23], fRf ∼= EndR(fR) is a
regular, right self-injective ring. According to [8, Corollary 9.15], eRe satisfies
general comparability. Let x ∈ fRf , we can find an idempotent g ∈ fRf and
a related unit w ∈ fRf such that x = gw. As w ∈ fRf is a related unit, there
exists an idempotent g ∈ fRf such that gw ∈ g(fRf) is right invertible and
(f−g)w ∈ (f−g)(fRf) is left invertible. Thus, w =

(
(f−g)w+g

)
(gw+f−g).

According to Theorem 2.2, eRe is a right quasi-stable ring. According to
Proposition 4.2, I is a right quasi-stable ideal. Analogously, we show that I is
a left quasi-stable ideal. Therefore I is quasi-stable, as desired. ¤

Let R be a regular ring, and let a ∈ R. If RaR is injective, it follows from
Proposition 4.5 and Theorem 2.2 that a is the product of an idempotent, a left
invertible element and a right invertible element.

Example 4.6. Let R be regular, and let

I = {x ∈ R | xR is injective}.
Then I is a quasi-stable ideal.

Proof. It is directly proved that I is an ideal of R. For any a ∈ I, there
exists an idempotent e ∈ I such that a ∈ eRe from [6, Lemma 3.2]. As eR
is injective, it follows from [8, corollary 1.23] that eRe is a regular, right self-
injective ring. Thus, it satisfies related comparability. Hence, there exists an
idempotent f ∈ eRe and a related unit w ∈ ere such that a = eu. This implies
that a = e(u + 1 − e), where e ∈ I is an idempotent and u + 1 − e ∈ Γ(I).
According to Theorem 2.2, I is a right quasi-stable ideal. Similarly, we show
that I is a left quasi-injective ideal, as asserted. ¤
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5. Directly finite ideals

We say that an ideal I of a ring R is directly finite provided that for any
a, b ∈ I, (1 + a)(1 + b) = 1 implies that (1 + b)(1 + a) = 1. An ideal I of a
ring R is said to be of bounded index provided that there exists some n ∈ N
such that xn = 0 for any nilpotent element x ∈ I. Let R be a regular ring, and
let I = {x ∈ R | EndR(xR) is of bounded index}. Then I is a directly finite,
quasi-stable exchange ideal.

Lemma 5.1. Let I be a directly finite, right quasi-stable exchange ideal of a
ring R. Suppose that AX +B = In with A,X ∈Mn(I), B ∈Mn(R). Then

(1) There exists some Y ∈Mn(R) such that A+BY ∈ GLn(I).
(2) There exists some Z ∈Mn(R) such that X + ZB ∈ GLn(I).

Proof. (1) Since I is directly finite, one easily checks that Γ(I) = GL1(I). By
iteration of the process of Theorem 3.2 and replacing the elements in Γ(I) by
invertible elements in 1+ I, we can find some Y ∈Mn(R) such that A+BY ∈
GLn(I).

(2) By (1), there is Y ∈ Mn(R) such that A + BY ∈ GLn(I). In view
of Lemma 2.4, one directly verifies that

(
X + (Xn −XY )(A+BY )−1B

)−1 =
A+Y (In−XA). Check Z = (Xn−XY )(A+BY )−1. Then X+ZB ∈ GLn(I),
as asserted. ¤

Theorem 5.2. Let I be a directly finite, right quasi-stable exchange ideal of a
ring R. Then for any regular A ∈ Mn(I) there exist U, V ∈ GLn(I) such that
UAV = diag(e1, . . . , en) for some idempotents e1, . . . , en ∈ I.
Proof. Given any regular matrix A ∈ Mn(I), there exists E = E2 ∈ Mn(I)
such that AMn(R) = EMn(R). Similarly to Theorem 3.4, we have idempo-
tents e1, . . . , en ∈ I such that ϕ : AMn(R) ∼= diag(e1, . . . , en)Mn(R). Then
Mn(R)A = Mn(R)ϕ(A), ϕ(A)Mn(R) = diag(e1, . . . , en)Mn(R). One directly
verifies that there exist some X,Y ∈ Mn(I) such that XA = ϕ(A) and
A = Y ϕ(A). Since Y X + (In − Y X) = In, it follows by Lemma 5.1 that
there exists some Z ∈ Mn(R) such that U := X + Z(In − Y X) ∈ GLn(I).
Hence UA =

(
X + Z(In − Y X)

)
A = XA = ϕ(A). Likewise, we can find

some V ∈ GLn(I) such that ϕ(A)V = diag(e1, . . . , en). Therefore UAV =
diag(e1, . . . , en), as asserted. ¤

Let I be an ideal of a ring R. Set B(I) = {e ∈ I | e = e2 and ex =
xe for any x ∈ I}. We say that I is an abelian ideal in case every idempotent
in I is in B(I). For example, every semicommutative ideal of a ring is an
abelian ideal.

Corollary 5.3. Let I be an abelian exchange ideal of a ring R. Then for any
regular A ∈Mn(I) there exist U, V ∈ GLn(I) such that UAV = diag(e1, . . . , en)
for some idempotents e1, . . . , en ∈ I.
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Proof. For any regular x ∈ I, we have y ∈ I such that x = xyx and y = yxy.
Since I is an abelian exchange ideal of R, we have x = x2y = yx2, and then
x = xy(1 + x − xy). Set e = xy and u = 1 + x − xy. Then e = e2 ∈ I and
u(1 + y − xy) = 1. Hence u ∈ Γ(I). Thus I is a right quasi-stable ideal by
Theorem 2.2.

Suppose that (1−x)(1−y) = 1 with x, y ∈ I; hence, (1−y)(1−x) ∈ 1+ I is
an idempotent. Since I is an abelian ideal of R,

(
1−(1−y)(1−x))x = x

(
1−(1−

y)(1−x)). Furthermore, we get (1−y)(1−x)(1−x) = (1−x)(1−y)(1−x). So
(1− y)(1−x) = (1− y)(1−x)(1−x)(1− y) = (1−x)(1− y)(1−x)(1− y) = 1.
That is, I is a directly finite ideal. Therefore we complete the proof from
Theorem 5.2. ¤

Recall that an ideal I of a ring R is periodic provided that for any x ∈ I,
there exists n(x) ∈ N such that x = xn(x)+1.

Corollary 5.4. Let I be a periodic ideal of a ring R. Then for any regular
A ∈ Mn(I) there exist U, V ∈ GLn(I) such that UAV = diag(e1, . . . , en) for
some idempotents e1, . . . , en ∈ I.
Proof. For any idempotent e ∈ I and any idempotent x ∈ I, we have (ex −
exe)2 = 0. So we deduce that ex = exe because I is an periodic ideal. Likewise,
we have xe = exe; hence, ex = xe. This means that I is an abelian ideal of
R. On the other hand, I is a strongly π-regular ideal; hence, it is an exchange
ideal. So the proof is true by Corollary 5.3. ¤

Example 5.5. Let V be a countably generated infinite-dimensional vector
space over a division D, and let (aij) ∈Mn

(
EndD(V )

)
with all dimD(aijV ) <

∞. Then there exist U, V ∈ GLn

(
EndD(V )

)
such that UAV = diag(e1, . . . , en)

for some idempotents e1, . . . , en ∈ EndD(V ).

Proof. Let I = {x ∈ EndD(V ) | dimD(xV ) < ∞}. Obviously, I is an ideal of
EndD(V ). For any idempotent e ∈ I, eRe is unit-regular; hence, I has stable
range one. This implies that I is directly finite. In view of Proposition 2.5, I
is a quasi-stable ideal. According to Theorem 5.2, the result follows. ¤

Let R be an exchange ring, and let (aij) ∈Mn(R). If each RaijR has stable
range one, analogously, we conclude that there exist (uij), (vij) ∈ GLn(R) such
that (uij)(aij)(vij) = diag(e1, . . . , en) for some idempotents e1, . . . , en ∈ R. In
addition, RuijR,RvijR (i 6= j), R(1 − uii)R and R(1 − vii)R all have stable
range one.
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