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DEPTHS OF THE REES ALGEBRAS
AND THE ASSOCIATED GRADED RINGS

MEE - KyounGg Kim

1. Introduction

Throughout this paper, all rings are assumed to be commutative with
identity. By a local ring (R, m), we mean a Noetherian ring R which
has a unique maximal ideal m. By dim(R) we always mean the Krull
dimension of R. Let I be an ideal in a ring R and ¢ an indeterminate
over R. Then the Rees algebra R[It] and the associated graded ring
gri(R) of I are defined to be

RIt]=ReteI’t’e .-
and

gri(R)=R/Ie /I’ I’/ & .-

These rings are important not only algebraically, but geometrically as
well. For example, Proj(R[It]) is the blow-up of Spec(R) with respect
to I.

The purpose of this paper is to investigate the relationship between
the depths of the Rees algebra R[It] and the associated graded ring
gr1(R) of an ideal I in a local ring (R, m) of dim(R) > 0. The relation-
ship between the Cohen-Macaulayness of these two rings has been stud-
ied extensively. Let (R, m) be a local ring and I an ideal of R. An ideal
J contained in I is called a reduction of I if JI" = I"*! for some integer
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n > 0. A reduction J of I is called a minimal reduction of I if J is min-
imal with respect to being a reduction of I. The reduction number of I
with respect to J is defined by

ry(f) = min{n > 0| JI" = "1},
The reduction number of I is defined by

r(I) = min{r;(I)|J is a minimal reduction of I }.

S. Goto and Y. Shimoda characterized the Cohen-Macaulay property
of the Rees algebra of the maximal ideal of a Cohen-Macaulay local
ring in terms of the Cohen-Macaulay property of the associated graded
ring of that maximal ideal and the reduction number of that maximal
ideal. Let us state their theorem.

THEOREM 1.1. ([4], Theorem 3.1) Let (R, m) be a Cohen-Macaulay
local ring of dimension d > 0 and assume that R/m is infinite. Then
the following conditions are equivalent.

(1) R[mt] is a Cohen-Macaulay ring.
(2) grm(R) is a Cohen-Macaulay ring and r(m) < d — 1.

In a number of cases, this theorem gives a test for determining
whether or not R[mt] is Cohen-Macaulay, because (m) is reasonable
to compute. For example, let R = k[[X?, X3]] and m = (X?, X?)R,
where k is a field and X is variable over k. Then R is one-dimensional
local domain and r(m) = 1. Hence R[mt] is not Cohen-Macaulay by
Theorem 1.1. More generally, if (R,m) is any one-dimensional local
domain which is not a rank one discrete valuation domain, then R[mi]
is not Cohen-Macaulay by Theorem 1.1.

Let (R, m) be alocal ring and I an ideal of R. The analytic spread of
4, denoted by {(I), is defined to be dim (R[It]/mR][It]). In [13], it is
shown that ht(I) <I(I) < dim(R). An ideal I is called equimultiple if
I(I) = ht(I). If R/m is an infinite field, then (I) is the least number of
elements generating a reduction of I ([13]). In particular, all m-primary
ideals are equimultiple. U. Grothe, M. Herrmann and U. Orbanz gen-
eralized Theorem 1.1 to the case of all “equimultiple ideals”. We now
state the result of Grothe - Herrmann - Orbanz.
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THEOREM 1.2. ([5], Theorem 4.8) Let (R, m) be a Cohen-Macaulay
local ring having an infinite residue field and I an equimultiple ideal
of height s. Assume that s > 0. Then the following conditions are
equivalent.

(1) R[It] is a Cohen-Macaulay ring.
(2) grr(R) is a Cohen-Macaulay ring and r(I)<s-—-1.

In general, it is known (cf. [9], Proposition 1.1) that if R and R[It]
are Cohen-Macaulay, then depth(R[It]) = depth(gr;(R)) + 1. On the
other hand, if gr;(R) is Cohen-Macaulay, then depth( R[It]) < 1+
depth(gr;(R)) (see Lemma 3.1). We shall prove that the following
equality

depth(R[It]) = depth(gr;(R)) + 1

always holds for ideal I under negation of the Cohen-Macaulay assump-
tion on gr;(R) and the condition that R is normally Cohen-Macaulay
along I. We also characterize that the property of Cohen-Macaulayness
of R[It] and gri(R) are equivalent for an equimultiple ideal T by impos-
ing the condition of a regular local ring on R. As a general reference, we
refer the reader to [11] for any unexplained notation and terminology.

2. Preliminaries

Let R be a Noetherian ring and I an ideal of R. Given an element
a € R, we define

(a {n if a € I"\I"*!
vl‘a)— o0 ifaEﬂnZlfn.

When vr(a) = n # oo, the residue class of @ in I*/I"*1 s called the
leading form of a and denoted by a*. If v;(a) = oo, then we set a* = 0.

LEMMA 2.1. Let R be a Noetherian ring and I an ideal in R. Let n
be a non-negative integer and b € R. Assume that bBRN I = bI'~" for
t>n. Let Ry = R/bR and I; = IR;. Then

R[I¥)

bt = g
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as graded R-algebras.

Proof. : Note that bBRNI? = bR for j < n. Let ¢-: R[It] — Ri[Lit]
denote the canonical epimorphism. Put K = Keré. Then K is a
homogeneous ideal in R[It].

Claim : K = (b,bt,--- ,bt").
D : It is obvious.
C : Let z be a homogeneous element of K with degz =1 > 0. Write
z = at' with @ € I'. Then we have a € bBRN I'. We have two cases :
(1) when!>n,and (2) whenl<n.
Case (1) : | > n. By assumption we write & = bc with ¢ € I'"" and
hence

z = at' = bet' = bt" - ct'" € (0t™)R[IH).

Case (2) : | < n. From the note, we write o = br with r € R, and
hence

=o' =rbt' e (BOYR[IE]. 1

LEMMA 2.2. Let R be a Noetherian ring, I an ideal in R anda € R.
Assume that a is a non-zero-divisior on R and aR N I™ = aI™! for
n > 1. Then
(1) (aR[It]: at) = IR[IY].

(2) There exists an exact sequence

o B (5) ] =

of graded R[It]-modules.

Proof. : (1) D: Let f € IR[It]. Write f = fo+ fit+ -+ fot?,
where f; € I'*1, 1 =0,1,---,s. Then we have

foat=a(fot+ fit* + -+ fst*t) € aR[I1).

C: Let f € (aR[It]: at) with f = fo + fit +--- + fit' € R[It]. Then
f-at = ag, where ¢ = go + g1t + - - - + gi41t' 7! € R[It]. Hence we have

ago + (agi — afolt + - + (agiyr — af )t =0.
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By the nature of a, f; = giy1 € I'*! fori = 0,1, - - , 1, which concludes
the proof of (1).
(2) Consider the exact sequence

o, (wat)R[I] RIY R[I{)

(@RI eRI " (aaRIg
of graded R[It]-modules. Moreover
(a,at)R[It] (at)R[It] _ (at)R[It]
aR[It]  aR[It]N (at)R[It] ~ (aR[It] : at)(at)
~ __ R[] R[]
= R e " IRE YW
= gri(R),
and
R\[1]. R
(;R') [Zﬁt} = m by Lemma 2.1 .

Notation : Let G = ®n>0G, be a non-negatively graded Noetherian
ring such that Gy is a local ring and A a finitely generated graded G-
module. Then we define depth(4) to be depthg, (A N ), where N is the
unique homogeneous maximal ideal of G. We let G* denote the ideal
Br>1 Gn-

LEMMA 2.3. ( ¢f. [3], Lemma 1.1) Let G be a non-negatively
graded Noetherian ring such that Gy is a local ring and A, B and C
be finitely generated graded G-modules. Suppose there is an exact
sequence

0—A-—B—C-—0

where the maps are all homogeneous. Then either
(1) depthA > depthB = depthC, or

(2) depthB > depthA = depthC + 1, or

(3) depthC > depthA = depthB.

Proof. : The proof follows from the Ext characterization of depth,
and the long exact sequence for Ext. |J
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DEFINITION 2.4. Let (R, m) be a local ring and I an ideal of R. We
say R is normally Cohen-Macaulay along [ if

depth (I"/I"*") = dim (R/I) for all n > 0.

REMARKS. : (1) Let (R,m) be a local ring. Then R is normally
Cohen-Macaulay along any m-primary ideal 1.
(2) Let (R, m) be a quasi-unmixed local ring and I an ideal in R with
ht(I) > 0. Assume that R is normally Cohen-Macaulay along I. Then
I is an equimultiple ideal.
(3) Let (R,m) be a local ring and I an ideal of R, and suppose that
R is normally Cohen-Macaulay along I. Suppose that b*, the image of
bin R/I, is a gry(R)-regular element. Then R/bR is normally Cohen-
Macaulay along I(R/bR).

Proof. : (1) It is trivial.
(2) Recall that dim(R) = dim(R/I)+ht(I) since R is a quasi-unmixed
local ring. R/I™ is Cohen-Macaulay for all n > 1 ([6], Lemma 3.8).
Then we have by a result of L. Burch ([1], Corollary in pp. 373)

I(I) < dim(R) — min{depth(R/I")}

= dim(R) — depth(R/I™), for some integer no
= dim(R) — dim(R/I"°)

= ht(I"°)

= ht(I).

(3) Put Ry = R/bR and I; = IR,;. We have the following isomor-
phisms
I" + R I" rr
LY /(L) = = = .
( 1) /(Il) I"*+1 + bR I+l 4 pIn b([n/[n+l)
Since b* is a gr7( R)-regular element, b is a non-zero-divisor on [™/I™*!
for all n > 0. Hence, we have
depth (I7'/I7') = depth (I"/I"t") -1
=dim(R/I) -1
= dim(Rl/Il). .
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3. Depths of the Rees algebras and the associated graded

rings

LEMMA 3.1. Let (R,m) be a d-dimensional Cohen-Macaulay local

ring and I an ideal of ht(I) > 0. Then

depth(R(It]) < depth(gri(R)) + 1.

Proof. : Consider the exact sequences

0— ItR[It] — R[It] — R—0

0 — IR[It] — R[It] — gr(R) — 0
of R[It]-modules. From (2) we have that by Lemma 2.3, either
depth(R[I#]) > depth(IR[It]) = depth(gr/(R)) + 1,

or

depth(grr(R)) > depth( R[It]).

In the second case we are done. Hence we assume that
depth(IR[It]) = depth(grr(R)) + 1.
From (1) it follows that by Lemma 2.3, either
depth(ItR[It]) > depth(R[It]),

or

depth(R[It]) > depth(ItR[It]) = depth(R) + 1.
But since TR[It] = ItR[It] as R[It]-modules, we have

depth(IR[[t]) = depth(ItR[It]).
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First, if depth(ItR[It]) > depth(R[t]), then

depth(gr;(R)) + 1 = depth(IR[It)) by (3)
= depth(ItR[It]) by (4)
> depth( R[I?]).

Second, if depth(ItR[It]) = depth(R) + 1, then

depth(gr;(R)) + 1 = depth(IR[It]) by (3)
= depth(ItR[It]) by (4)
= depth(R) + 1
=dim(R) + 1 (R: CML)
= dim(R[I?])
> depth(R[I?]).

Thus, in all cases we have

depth(R[I1]) < depth(grr(R) +1. N

LEMMA 3.2. Let V be a finite-dimensional vector space over the
infinite field K, and let Hy,--- ,H, be proper subspaces of V. Then
there exists v € V such that v ¢ Hyu---UH,.

Proof. : We proceed by induction on n. If n = 1, then it is clear.
If n > 1, then we can choose an element & € V such that a ¢ Hy U
-+ U H,,_; by inductive hypothesis. By the nature of H,,, there exists
an element 8 € V\H,. Suppose that Hy U--- U H,, = V. Since
K is infinite, there are distinct elements 7y, - - ,"n+1 In I such that
@+ 7118, -+ ;a4 ry413 are in V. By the pigeonhole principle, two of
them must be in the same subspace, say a + ;3. o + r; 8 are in Hy for
some k, where i # j. If k = n, then (a +7;5) —(a+riB)=(ri—r;)B €
H,. Hence 3 € H,, which is a contradiction to the choice of 8. If
k <n,then (r; —r;)B € Hy, and hence 3 € H. Since « + 78 € Hy, it
follows that o € Hy, which is a contradiction to the choice of «. |
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LEMMA 3.3. Let (R, m) be a local ring and I an ideal in R of ht(I) >
0. Suppose that

depth(I"/I"t1) > 0 for all n > 0.

Then we can find an element * € m which is a non-zero-divisor on R/I™
for all n > 0.

Proof. : Since |J,, Assg;(I"/I"*') C Assp/i(gri(R)) and Assgy;
(gr1(R)) is a finite set (cf, [12], Proposition 1.3), and hence | J,, Assg;s
(I”/I"'H) is a finite set. We can choose an element z € m which is a
non-zero-divisor on I"/I"*! for all n > 0.

Claim : z is a non-zero-divisor on R/I"*! for all n > 0.

This will be done by induction on n. The assertion is clear for n = 0.
So we assume n > 1. Since z is a non-zero-divisor on I"/I"*! and on
R/I™, z is a non-zero-divisor on R/I™*! by considering a short exact
sequence. [ |

THEOREM 3.4. Let (R, m) be a positive integer d-dimensional Cohen-
Macaulay local ring having an infinite residue field k and I an ideal with
ht(I) > 0. Assume that gr;(R) is not Cohen-Macaulay and R is nor-
mally Cohen-Macaulay along I. Then

depth(R[It]) = depth(gri(R)) + 1.

Proof. : The inequality < holds by Lemma 3.1. We now prove the
other inequality. We proceed by induction on r = dim(R/I). We have
two cases : (1) when r =0, and (2) when r > 0.

Case (1) : » = 0. In this case I is an m-primary ideal of R. We
now proceed by induction on d = dim(R). Since the inequality is
trivial if either d = 1 or depth(¢gr;(R)) = 0, we may assume that
d > 2 and depth(gri(R)) > 1. Since [ is an m-primary ideal of R,
any homogeneous element of degree 0 that is not a unit is nilpotent
in gry(R). Hence there exists a regular element in gr;(R)t. That
is, gri(R)Y € U{Q|Q € Ass(gri(R))}. For each @ € Ass(gri(R)),
((@NI/I*Y+mI/I?)/(mI]I?) is a proper k-vector subspace of I/ml

by Nakayama’s Lemma. Since & is infinite, we can choose a € I\mI
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such that the image of a in I/I?, a*, is not in any associated prime
Q of ng(R) by Lemma 3.2. That is, a* is a gr;(R)-regular element.
Hence a is a non-zero-divisor on R and aRN I™ = aI™! for all n >1
(¢f : [14], Corollary 2.7). We have an exact sequence

im0 () [5]

of R[It]-modules by Lemma 2.2. Applying Lemma 2.3, we see that
either

depth(gr(R)) > depth (IE[;)]) = depth (( Z) [a;tb

or

depth (%?) 2 depth(gr;(R)) = depth ((%) [ét]) + 1,

or

depth ((%) [—;%1}) > depth(gr1(R)) = depth (fi[(f)t]).

But as a* is a grj(R)-regular element, gr;(R)/(a*) = gr;,(R,), where
= R/aRand I, = IR,. First, if depth (R[It]/(a)) = depth(R;[I;1)),
then

depth(R[[t]) = depth ( ([ ]> +1

= depth(Ry[L1t]) + 1
> depth(gry, (Ry1))+ 141

= depth (M) +2
(a*)

= depth(gr;(R)) — 1+ 2
= depth(gr;(R)) + 1.
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Second, if depth(R[It]/(a)) > depth(gr;(R)), then

depth(R[It]) = depth(R[It]/(a)) + 1
> depth(gr;(R)) + 1.

Third, if depth(gr;(R)) = depth(R[It])/(a)), then the assertion is clear.
Thus, this completes the proof of case (1).

Case (2) : » > 0. Assume that the inequality holds for » — 1. Since R
is normally Cohen-Macaulay along I, we can choose an element b Em
which is a regular element on R/I™*! for all n > 0 by Lemma 3.3,
and hence b is a non-zero-divisor on R and bR N I" = bI" for all
n > 1 (¢f: [6], Lemma 1.35). Applying Lemma 2.1, we get the
following isomorphism R[It]/(b) = R,[I»t], where R, = R/bR and
I = IR;. Hence dim (R;/I;) = dim (R/(1,b)) = dim (R/I) — 1,
and gry,(Ry) = gri(R)/(b*) is not Cohen-Macaulay, as b* is a gri(R)-
regular element and R, is normally Cohen-Macaulay along I. By the
inductive hypothesis, we have

depth(Rz[I>t]) > depth(grr,(R2)) + 1.
depth(R[It]) — 1 > depth(gr/(R)) — 1 + 1.

This completes the proof of case (2). [ |

COROLLARY 3.4.1. ([8], Theorem2.1 ) Let (R, m) be a Cohen-Maca
ulay local ring of dimension d > 1 and I an m-primary ideal. Assume
that gri(R) is not Cohen-Macaulay. Then

depth(R[It]) = depth(gri(R)) + 1.

Proof. : Recall that R is normally Cohen-Macaulay along any m-
primary ideal. [ |

We next show that the property of Cohen-Macaulayness of R[It] and
gri(R) are equivalent for equimultiple ideals by imposing the condi-
tions of a RLR (Regular Local Ring) on R. In other words, using a
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consequence of the Briancon - Skoda Theorem we can drop the con-
dition (I) < s — 1 in Theorem 1.2. Recall that an element a € R is
integral over an ideal I if it satisfies an equation of the form

a*+ria" M 4, =0, r € I',

The set of all elements which are integral over an ideal I form an ideal,
denoted by I and called the integral closure of I.

REMARKS. : (1) Let R be a Noetherian ring. Then an ideal J C I
is a reduction of I if and only if I C J.
(2) The Briangon-Skoda Theorem (see [2], [10], or [7]) states that if
(R, m) is a regular local ring and I is an ideal generated by n elements,
then I C I.

LEMMA 3.5. Let (R,m) be a regular local ring with an infinite
residue field and I an equimultiple ideal with ht(I) = s > 0. As-
sume that gr;(R) is a Cohen-Macaulay ring. Then there exist elements
ai,---,as in I such that I* = (ay, -+ ,a,)I°"}.

Proof. : Let (ay,--- ,a;) be a minimal reduction of I. Let by,--- , b,
be a system of parameters modl, where r = dim(R/I) = dim(R) —
ht(I). Then {&%,---,b% a},---,a%} is a homogeneous system of pa-
rameters for gr;(R), where deghb? =0 for ¢ = 1,--- ,7, and degaj =1
forj =1,--+,s (¢f: [5],Corollary 2.7). Hence it is a grj( R)-regular se-
quence since gr;(R) is Cohen-Macaulay. We have (a1, - ,a;)(I" =
(a1, ,a)I*7 1, ¥n > 1 (¢f : [14],Corollary 2.7). (ay,--- ,a,)® is a
reduction of I® since (aj, - ,a,) is a reduction of I. Then

(alv"’ ’as)s g 1'8 g (a‘lv"' 70’8)3 g (alv"' aas)'
Hence we have

(a1, ) = (a1, - a) ()" =1". 1
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THEOREM 3.6. Let (R, m) be a regular local ring an infinite residue
field and I an equimultiple ideal with ht(I) = s > 0. Then the following
conditions are equivalent.

(1) RI[It] is a Cohen-Macaulay ring.
(2) gri(R) is a Cohen-Macaulay ring.

Proof. : (1) == (2) : This follows from Proposition 1.1 in [9].
(2) = (1) : By Lemma 3.5, there exist elements a, -+ ,a, in I such
that I* = (a1, -+ ,a,)I*7. This implies r(I) < s — 1, which proves the
assertion from Theorem 1.2. |

COROLLARY 3.6.1. (Huneke, [8], Proposition 2.6) Let (R, m) be a
regular local ring dim(R) = d > 0 with an infinite residue field and I
an m-primary ideal of R. Then R[It] is Cohen-Macaulay if and only if
gr1(R) is Cohen-Macaulay.

COROLLARY 3.6.2. Let (R, m) be a regular local ring and I an ideal
of R with ht(I) > 0. Assume that R is normally Cohen-Macaulay along
I. Then

depth(R[It]) = depth(gri(R)) + 1.

Proof. : Case (1) : If gr;(R) is not Cohen-Macaulay, then we have
the equality by Theorem 3.4.
Case (2) : If gr(R) is Cohen-Macaulay, then we see that I is equimul-
tiple since R is normally Cohen-Macaulay along I. Hence we have the
equality by Theorem 3.6. [ |

COROLLARY 3.6.3. Let (R,m) be a regular local ring of dimension
d > 0 and I an m-primary ideal. Then

depth(R[It]) = depth(gr((R)) + 1.
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