• 제목/요약/키워드: (1, ${\alpha}$)-derivations

검색결과 15건 처리시간 0.028초

ON GENERALIZED (α, β)-DERIVATIONS IN BCI-ALGEBRAS

  • Al-Roqi, Abdullah M.
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.27-38
    • /
    • 2014
  • The notion of generalized (regular) (${\alpha},\;{\beta}$)-derivations of a BCI-algebra is introduced, some useful examples are discussed, and related properties are investigated. The condition for a generalized (${\alpha},\;{\beta}$)-derivation to be regular is provided. The concepts of a generalized F-invariant (${\alpha},\;{\beta}$)-derivation and ${\alpha}$-ideal are introduced, and their relations are discussed. Moreover, some results on regular generalized (${\alpha},\;{\beta}$)-derivations are proved.

REMARKS ON GENERALIZED JORDAN (α, β)*-DERIVATIONS OF SEMIPRIME RINGS WITH INVOLUTION

  • Hongan, Motoshi;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.73-83
    • /
    • 2018
  • Let R be an associative ring with involution * and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an $({\alpha},{\beta})^*$-derivation of R if $d(xy)=d(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $F:R{\rightarrow}R$ is called a generalized $({\alpha},{\beta})^*$-derivation of R associated with an $({\alpha},{\beta})^*$-derivation d if $F(xy)=F(x){\alpha}(y^*)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [12], and a theorem of Daif and El-Sayiad [6], moreover, we generalize a theorem of Ali et al. [4] and a theorem of Huang and Koc [9] related to generalized Jordan triple $({\alpha},{\beta})^*$-derivations.

STRUCTURE OF 3-PRIME NEAR-RINGS SATISFYING SOME IDENTITIES

  • Boua, Abdelkarim
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.17-26
    • /
    • 2019
  • In this paper, we investigate commutativity of 3-prime near-rings ${\mathcal{N}}$ in which (1, ${\alpha}$)-derivations satisfy certain algebraic identities. Some well-known results characterizing commutativity of 3-prime near-rings have been generalized. Furthermore, we give some examples show that the restriction imposed on the hypothesis is not superfluous.

HOLOMORPHIC FUNCTIONS ON THE MIXED NORM SPACES ON THE POLYDISC

  • Stevic, Stevo
    • 대한수학회지
    • /
    • 제45권1호
    • /
    • pp.63-78
    • /
    • 2008
  • We generalize several integral inequalities for analytic functions on the open unit polydisc $U^n={\{}z{\in}C^n||zj|<1,\;j=1,...,n{\}}$. It is shown that if a holomorphic function on $U^n$ belongs to the mixed norm space $A_{\vec{\omega}}^{p,q}(U^n)$, where ${\omega}_j(\cdot)$,j=1,...,n, are admissible weights, then all weighted derivations of order $|k|$ (with positive orders of derivations) belong to a related mixed norm space. The converse of the result is proved when, p, q ${\in}\;[1,\;{\infty})$ and when the order is equal to one. The equivalence of these conditions is given for all p, q ${\in}\;(0,\;{\infty})$ if ${\omega}_j(z_j)=(1-|z_j|^2)^{{\alpha}j},\;{\alpha}_j>-1$, j=1,...,n (the classical weights.) The main results here improve our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587 and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.

DERIVATIONS ON SEMIPRIME MUTATION ALGEBRAS

  • Jeong, Kwang-Taek
    • 대한수학회논문집
    • /
    • 제14권1호
    • /
    • pp.69-74
    • /
    • 1999
  • In [2], the author discusses derivations of A(p,q) when A(p,q) is prime and p,q $\in$ A satisfy the condition A=Ap+Aq+R where R is a subspace of Z(A). In this paper, we consider a general-ization of Theorem 1 in [2] for the semiprime case of A(p,q).

  • PDF

ON GENERALIZED TRIANGULAR MATRIX RINGS

  • Chun, Jang Ho;Park, June Won
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.259-270
    • /
    • 2014
  • For a generalized triangular matrix ring $$T=\[\array{R\;M\\0\;S}]$$, over rings R and S having only the idempotents 0 and 1 and over an (R, S)-bimodule M, we characterize all homomorphisms ${\alpha}$'s and all ${\alpha}$-derivations of T. Some of the homomorphisms are compositions of an inner homomorphism and an extended or a twisted homomorphism.

MULTIPLICATIVE (GENERALIZED) (𝛼, 𝛽)-DERIVATIONS ON LEFT IDEALS IN PRIME RINGS

  • SHUJAT, FAIZA
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권1_2호
    • /
    • pp.1-7
    • /
    • 2022
  • A mapping T : R → R (not necessarily additive) is called multiplicative left 𝛼-centralizer if T(xy) = T(x)𝛼(y) for all x, y ∈ R. A mapping F : R → R (not necessarily additive) is called multiplicative (generalized)(𝛼, 𝛽)-derivation if there exists a map (neither necessarily additive nor derivation) f : R → R such that F(xy) = F(x)𝛼(y) + 𝛽(x)f(y) for all x, y ∈ R, where 𝛼 and 𝛽 are automorphisms on R. The main purpose of this paper is to study some algebraic identities with multiplicative (generalized) (𝛼, 𝛽)-derivations and multiplicative left 𝛼-centralizer on the left ideal of a prime ring R.

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • 대한수학회보
    • /
    • 제43권1호
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

ON (${\sigma},\;{\tau}$)-DERIVATIONS OF PRIME RINGS

  • Kaya K.;Guven E.;Soyturk M.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권3호
    • /
    • pp.189-195
    • /
    • 2006
  • Let R be a prime ring with characteristics not 2 and ${\sigma},\;{\tau},\;{\alpha},\;{\beta}$ be auto-morphisms of R. Suppose that $d_1$ is a (${\sigma},\;{\tau}$)-derivation and $d_2$ is a (${\alpha},\;{\beta}$)-derivation on R such that $d_{2}{\alpha}\;=\;{\alpha}d_2,\;d_2{\beta}\;=\;{\beta}d_2$. In this note it is shown that; (1) If $d_1d_2$(R) = 0 then $d_1$ = 0 or $d_2$ = 0. (2) If [$d_1(R),d_2(R)$] = 0 then R is commutative. (3) If($d_1(R),d_2(R)$) = 0 then R is commutative. (4) If $[d_1(R),d_2(R)]_{\sigma,\tau}$ = 0 then R is commutative.

  • PDF