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HOLOMORPHIC FUNCTIONS ON THE MIXED NORM
SPACES ON THE POLYDISC

STEVO STEVIE

ABSTRACT. We generalize several integral inequalities for analytic func-
tions on the open unit polydisc U™ = {z € C* | |3;| <1, j=1,...,n}. It
is shown that if a holomorphic function on U™ belongs to the mixed norm
space AZ?(U™), where w;(-), j = 1,...,n, are admissible weights, then
all weighted derivations of order |k| (with positive orders of derivations)
belong to a related mixed norm space. The converse of the result is proved
when, p,q € [1,00) and when the order is equal to one. The equivalence
of these conditions is given for all p,q € (0, 00) if wj(z;) = (1 — |z;|2)*4,
a; > —1,j = 1,...,n (the classical weights.) The main results here im-
prove our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587
and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.

1. Introduction

Let U' = U be the unit disk in the complex plane C, dm(-) = 1rdrdf the
normalized area measure on U, D(a,r) the disk in C centered at a with radius
ra, U™ the unit polydisc in the complex vector space C*, r, p,d € (0,00)™ and

a € (—1,00)". fwewrite0 <r <1, wherer = (ry,...,r,) it means 0 < r; < 1
for j = 1,...,n, and r + 2 stands for (r{ +2,...,7, + 2). For z,w € C?
we write z - w = (21w, ..., 2,Wn); € is an abbreviation for (e¥1,...,e"");

dt = dty---dt,; df = dby---df,. Let v = (v,...,7,) be a multi-index, v
being nonnegative integers, we write
M=n+-Fmm A=l =2z
For a holomorphic function f we denote

olf

Let
Ph(w,r) ={zeC"||z; —wj|<r;,j=1,...,n}
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be a polydisc in C* and let H(P™(w,r)) be the class of all holomorphic func-
tions f defined on P™(w,r).
For f € H(U™) and p € (0, 00) we usually write

1/p
- _1_ r. e
My(f,1) = (QW)R [, e d@) ,

0 < r < 1, for the integral means of f.
Let w(s), 0 < s < 1, be a weight function which is positive and integrable
n (0,1). We extend w on U by setting w(z) = w(|z]). We may assume that our
weights are fformalized so that fol w(s)ds = 1.
Let £E = LE(U™) denotes the class of all measurable functions defined on
U™ such that

1) 171 = [ 1P T[wstm)anz) <o
n j=1
where wj(2;), 7 = 1,...,n, are admissible weights (see, Definition 1) on the

unit disk U. The weighted Bergman space A% = A% (U™) is the intersection of
LE and H(U™). For wj(z;) = (o + 1)(1 = |2;1*)%, a; > =1, =1,...,n, we
obtain the classical Bergman space A%, see [1, p.33] and Lebesgue space L.

Let £57 = LB7(U™) denotes the class of all measurable functions defined on
U™ such that

@ e ) T s rs)d < o0,
j=1

and AZ? = ARY(U™) be the intersection of £Z? and H(U™). When p = q we
denote AZ%? by A%. This space is called the mixed norm space. If w;(z;) =
(aj +1)(1 = |2;]*)%, oj > =1, j =1,...,n, then the space will be denoted by
AP4(U™) (the classical mixed norm space).

Using polar coordinates and by some elementary calculations it is easy to see
that in the case p = ¢, norms (1) and (2) are equivalent on the space H(U™).

Recently there is a huge interest in studying the weighted Bergman spaces
of analytic functions of one variable see, for example, [4, 5, 6, 7, 8, 15, 16, 24],
and the weighted Bergman spaces of analytic and harmonic functions on the
unit ball B C C" see, for example, in [1, 3, 9, 10, 12, 13, 14, 22, 23] (see, also
the references therein).

In [1] and [18] the authors proved the following theorem.

Theorem A. Letp € (0,00), a = (a1,...,0), witha; > =1 forj=1,...,n,
m be o fized positive integer and let k = (ky,...,k,) € (Z4)™. Let f € H({U™),
then f € AL(U™) if and only if

okl f
L= [H 1|zl ]m(z)eﬁﬁ, for everyk, |k| =m
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Moreover,

m-1
Fllaz = D [D*FO))+ D0 I llez -

k|=0 K|=m

The expression A < B means that there are finite positive constants C' and
C' such that CA < B < (C'A.

In the proof of Theorem A, when p € [1,00), G. Benke and D. C. Chang
used the weighted Bergman projection B, : £2 — A2, which can be extended
as a bounded operator from L% onto AZ. Case p € (0,1] was considered by
a quite different method in [18] by the author of this paper. Closely related
results on the unit disc and the unit ball in C* or R® can be found in [1, 2, 4,
5, 12, 14, 15, 16, 17, 21, 22, 24].

Motivated by paper [22], in [19] we proved the following result:

Theorem B. Letp € (0,00), a = (a1,...,an), witha; > -1 forj=1,...,n,
and f € H(U™). Then f € A2(U™) if and only if the functions

oISty
Tsf =110 -2 55
]161'; ’ Hjes 0z,
belong to the space LE(U™), for every S C {1,2,...,n}, where xs(-) is the
characteristic function of S, |S| is the cardinal number of S, and [[;c50z; =
0zj, -+ 0zj s, where jr € S, k=1,...,|5].

(xs(D)z1, xs(2)za, ..., x5(n)2n),

Moreover, || - || a2 and the following norm
1Al =1F@1+ > IITsfllez,
SC{1,...,n},5#£0

I| - ||« are equivalent on AL (U™).

From now on ||f|}. will denote the following quantity

FOI+ Y. ITsfllene.

SC{1,...,n},S#0

Note that Theorems A and B are both characterizations for a function f to
belong to A2 (U™). The main purpose of this paper is to generalize Theorems
A and B in the case of the mixed norm space.

For a given weight w the function

def 1

Y(r) =,(r) = m/rlw(u)du, 0<r<l,

is called the distortion function of w. We put ¥(z) = ¥(|z|) for z € B.

Definition 1 ([15]). We say that a weight w is admissible if it satisfies the
following conditions:
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(a) There is a positive constant A = A(w) such that

wlr) > =

1
/ w(u)du for 0<r<1

(b) w is differentiable and there is a positive constant B = B(w) such that

W'(r) < w(r) for 0<r<1;

1—-r
(c) For each sufficiently small positive & there is a positive constant C' = C(d,w)
such that
w(r)
sup ————— < C.
0981 w(r +8y(r)) ~

Observe that (a) implies Ay (r) < 1—r thus for sufficiently small positive 4
we have r + d1(r) < 1 and the quantity in the denominator of the fraction in
(c) is well defined. It is easy to see that the classical weight w(r) = (1 — r?)e,
a > —1 is admissible. Some other examples of admissible weights can be found
in [15, pp.660-663).

In this paper we prove the following results.

Theorem 1. Letk = (ky,...,kn) € (Z4)", f be a holomorphic function de-
fined on U™ in C* and w;(z;), j =1,...,n are admissible weights on the unit
disk U, with distortion functions ¥;(z;), 7 =1,...,n.

(a) If f € ARY(U™) with p,q > 0, then
. kj 8|k|f P,q n
3) Lo = [ T4 @) s (2) € £57(U™).
=1

Azkr . Bz

Moreover, let m be a fized positive integer. Then there is a positive constant
C = C(p,q,wj,m,n) such that

m—1 ‘
) fllags 2 C( X (D<@ + D2 M s llege )-
|k|=0 k|=m

(b) If p,qg € [1,00) and for all j = 1,...,n, zpj(zj)%:—_(z) € LY, then
f € A%? and there is a positive constant C = C(p, q,w;,n) such that

[[fllaze <C (If(G)I +y . ) .
i=1 5

Theorem 1 (b) was proved in [20] so that we give here only a sketch of the
proof for the benefit of the reader. It is an open problem whether Theorem 1
(b) holds if p or ¢ belong to the interval (0,1]. A partial answer to the question
gives the following main result of this paper, which concerns the classical weight
case.

of
¥; 2.

J
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Theorem 2. Let p,q € (0,00), a = (ai,...,an), with a; > =1 for j =
1,...,n, m be a fizred positive integer and let k = (k1,...,kn) € (Z)™. Let
f € H(U™), then the following conditions are equivalent

(a) f € ATU(U™);
(b)

n oIkl f
L= [H 1- lzjl }W(Z) € Lhe forall k, [k|=m
i=1 n

(¢) The functions

15|
Tof = 101 - 1) =2L (ks x5 x5(m)20),

jES HJESa
for every S C{1,2,...,n}, are in LPI(U™).
Moreover,
m—1
fllage <D [D*FO)]+ D 1l Dellezax If]]s
tk|=0 |k|=m

We would like to point out that Theorem 2 cannot be easily obtained from
the results in our papers [18] and [19].

The organization of the paper is as follows: In Section 2 we prove several
auxiliary results, which we use in the proofs of the main results. The main
results of the paper, i.e., Theorems 1 and 2 are proved in Section 3.

We have to say that throughout the rest of the paper C will denote a constant
not necessarily the same at each occurrence.

2. Auxiliary results

In this section we prove several auxiliary results which we use in proving
Theorems 1 and 2 in the subsequent section.

Lemma 1 ([18, p.579]). Let f € H({U™), v be a multi-indez and p > 0. Then

) L e N | LTS

Jj=1

whenever P™(w,r) C U™, where C is a constant depending only on p,v and
n.

Lemma 2. Let 8 be a multi-index and a € U™. Then the point evaluations
Aap(f) = DPf(a) are bounded linear functionals on AP4(U™) for all p,q €
(0, 00).
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Proof. Choose P"(a,d) C U™ Let m = min_ prr [Tj=1wj(z;) > 0 and

d= frlla,x }(lajl +4;). Note that d < 1. By Lemma 1, using polar coordinates
Jj€il,..m

and the monotonicity of the integral means M2 (f,r), we have

DPfa)r < 7 [ r@r [Lamez)
5BPHJ 1 .7 "(a5) Jl;[l ’
< F)P T w3 (e)dm(z)
= mdPr+2 Pn(0,d) i I ’
cr [t 0 "
(6) < m5ﬁp+2/0 G /O L fre )ldeng‘(Tj)Tdej
[ ] =1
< méﬁp'*‘? S(f,d / HWJ rj)ridr;
c
< WMi(f, r)
for r € [d,1). O

Raising (6) to the g/pth power, then multiplying obtained inequality by
H?:1 w(r;) and integrating over r € [d,1)", we obtain

|D? f(a)| / Hw ri)dr; < C MJ(f,r) Hw(r, dr;,
[d,1)" i1

from which the result follows.
Lemma 3. Let f € H({U"), and

27
My = 5= [ G, P

Then there are positive constants Cy and Co independent of f, z;, j # k, p
and i, such that

(a) Ifp € (0,1], then
ME(F,p0) ~ ME(ms) < Culn —r ME (55 1),
(b) Ifp> 1, then
Myf, i) = My(F,72) < Calpr = ri) My (52 1)

Proof. Let I = min{1, p}. Using Minkowski’s inequality in the case p > 1 or the
following elementary inequality (z + y)? < 2f + y?, 2,y > 0, when p € (0,1],
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we have

M}(f,px) — ML(f,7e)

2 s

(px — i) (/% sup
2r 0 TR<t<pk
of
-t L)

In the last inequality we have used Hardy-Littlewood maximal theorem, see,
for example, [4, Theorem 1.9]. O

IN

l/p
of 0 P
—aZk(...,te ,)l dak)

IA

Lemma 4. Let f € H{U"), p,q € (0,00) and Br,; € R, k,j =1,...,n. Then
there is a constant C' = C(p, q, Bk,j,n) such that

max q<C )N? + /Mq 1—1' YPrs dr
e 1@ < c (170 Z B 1} i)
forallk=1,....n

Proof. Without loss of generality we may assume that n = 2. The case n > 3
is only technically complicated. Since

1 1
fnm) = 10,00 = [ Glrtem )i+ [ G0,

by some well-known inequalities we obtain

@
of P of P
P <o (1£0.0P + max |G+ max [2LoGf ),

for all 21,2 € D(0,1/2), where ¢, = 1 for 0 <p < 1and ¢, = 377! for p > 1.
On the other hand, from (5), (7), by polar coordinates and the monotonicity

of M}i’(%, 7’1,7’2), we obtain

2
of
(8) [f(21,22)]P < C (lf(070)|p+;M5(5z‘;aT1ﬂ’2)>
for all 21,2, € D(0,1/2), and r1,75 € [3/4,1).
Let m; = min,c[g,7/g]2 H?=1(1 - r]z-)ﬁ’“vf, J = 1,2. Raising (8) to the ¢/pth
power and by some simple calculation, it follows that

1— B,
lf(zl,zz)l"<0<lf(0 opr+ 3> iz 1) (5L, rm)).

m;
k=1 J
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Integrating this inequality over [3/4,7/8]? with respect to r; and re and divid-
ing by the obtained constant standing nearby |f(z1, 22)|9, it follows that

af 2 .
|f{Z1,Z2)Iq < C f(O O ]q +Z[ 8 karlar2> H(]. —"']) k’]drj
i=1

(3/4, 7/8
for every 21,22 € D(0,1/2), from which the result follows. O

Using the change r — (1+47)/2 and some well known elementary inequalities
the following lemma can be proved (see [11]).

Lemma 5. Let g(r) be a nonnegative continuous function on the interval [0,1),
b >0 and let a > —1. Then there is a constant C = C(a,b) such that

/0] ()1 r)dr < C ( max_go(r) + /01 lo(127) — a0 @ _T)adg |

ref0,1/2]

Lemma 6. Suppose p,q € [1,00) and f € H(U"). Then
d _ - of
M9 g—1 . et

©) = M(f,r) < aMI~(f,tr) le oy azi’tr)’

almost everywhere.
Proof. Let first p = ¢q. For f = 0 the result is obvious. If f Z 0, at points where

S is not zero, it is easy to see that

tr e)!.

(10) (If(t'r e)P) < plf(tr-e*)jP- IZ

From (10) and by the dominated convergence theorem we obtain

—M”(f,tr) < G )nz /0271'}“ |f(tr - e®)|P~ 1‘ -(tr - € ’dt?

If p = 1 the assertion is clear. If p > 1, applying on the last integral Holder’s
inequality with exponents p/(p—1) and p we obtain the result.

If p # q, computing 4L 2(f,tr) and then using the case p = g, the result
follows. 0

3. Proof of the main results

In this section we prove the main results in this paper.
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Proof of Theorem 1. (a) Let v be a multi-index, such that |y| = m. Let f €
H(U™) and z = (21,...,2n) € U™. Applying Lemma 1 to the functions f(z-€?),
where 0; € [0,27),j = 1,...,n, when p > r, we get

(11)

¥ L oi0\IP c PR LAY} . d .
L a1 s 3 MO 2] ] ames).

Integrating (11) over [0, 27]™ and then using Fubini’s theorem, we obtain

(12) MR(D7f,r) < —C—‘“‘/ / [f(w- € ]PdOHdm wj)-
Pr(r,p—r) J[0,27]"

— +2
(p—r)e ey

Assume first that ¢ > p. Raising both sides of inequality (12) to the ¢/pth
power and applying Jensen’s inequality, it follows that
(13)

a/p p

(DY __C______ . ptf ,
MZ(D"f,r) < TR /}>n<r,p~r) (/[O’w]n |fw-e )|Pd0> jI:Ildm(wJ).

If p > ¢, then using Minkowski’s inequality to inequality (11), where instead
of p stands g, we also obtain inequality (13). By the monotonicity of the
integral means, 2r-periodicity of the function |f(r-€?)| in each variable 8;, j €
{1,...,n} and (13), it follows that

[0,27]"

a/p
(14) (p—T)”qMﬁ(D”f,T)S(/’(/O If(ple"“,-.~,pne“"‘)l”d9) :

Put p; = pj(r;) = rj + 8;9;(r;), 0 < r; < 1, in (14), where §; are chosen
in the following way. First note that, if § € (0, A) we have r; < p;(r;) <1
for 7; € [0,1). On the other hand by conditions (b) and (c) of Definition 1 we
obtain

) =165 — 6,0y > 16, (1 + 5)
Pi\Tj P ) N = j A/
We choose §; € (0,A) such that pi(r;) > co > 0 for r; € [0,1). Putting
p; = p;(r;) in (14), then multiplying obtained inequality by H?:l wj(r;), using
condition (c) in Definition 1 and the fact that p}(r;) > co > 0 for r; € [0,1)
and every j € {1,...,n}, we obtain

H((5 Yi(r)) " w;(rs) ME (DY f,r)
i=1

SC(‘/[ozn If(p-é |Pd9) H i(pj(r3))p5(rs)-
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Integrating this inequality over [0,1)" and making the changes t; = p;(r;),
j=1,...,n, it follows that

15 / MDY f,r) [ 977 (r)ws (ry)dr;
j=1 [0,1)" 7=1
a/p p
c (/ £ (e, ... ,tnei"">|”d9> [1 witts)a;
5@ \Jio,2n =

< C ME(f,8) T wits)dt;,
j=1

IN

[0,1)»

from which inequality (3) follows.
Let 8 be a multi-index. By Lemma 2 we know that the linear functional
L(f) = D?£(0), is bounded. Hence [D?f(0)|? < C||f||%.. for all f € H{U™)

and for some C = C(p,q, 3,d) > 0. Hence inequality (4) holds.
(b) Without loss of generality, we may assume that n = 2, and f(0,0) = 0.
Also we assume that f is not constant and all integrals are finite. In order to

avoid some complicated notations we use My (r1t,r2t) instead of MJ(f,r1¢,rat).
We have

(158)  WF11%e.

- L4

rlt TQt)dt) w1 (Tl)WQ(TQ)dT}d’I"Q

d
< / / {/ M (rat, ra) M, (gf rt, r2>r1dt> wn (1 e (r2)dry s
+q/ / ( M (ry, rot) M, (gf ,rl,r2t>r2dt) wi (1)wa (ra)drydrs
< / / (/ M (s, )M, (gi,s,m)ds) w1 (r1 ) (r2)dry drs
+q// (/ M (ry,7) (g]; r,T )m) wi (11 )ws (r2)drydry
< o [ M (2 o r)no et

)
-H]/ / Mg—l(rl,T)Mp(—af ,Tl,T)wz(T)wg(T)wl(rl)derl =1+ L.
0 Jo 29

If ¢ > 1, by Holder inequality with the exponents ¢/(¢ — 1) and ¢, we get

ooy n<inigs ([ [ srz)«m>w1<s)w2<rz>dsdrz)l/q.
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Similar inequality holds for I». From the inequality, (15) and (16) we obtain
the result in this case. For ¢ = 1 the result follows from (15). If f is constant
the result is clear. To remove the restriction of the finiteness of the integrals we
consider holomorphic functions f,(z) = f(pz),p € (0,1) and use the Monotone
Convergence Theorem, when p — 1. O

Proof of Theorem 2. (a)=(b), (c). Implication (a)=(b) is a consequence of
Theorem 1, when wj(z]) = (1- |z )i, j = 1,...,n. Indeed, in this case
PYi(zj) < (1 - ]zJ| ) ] = 1,...,n. (a)={c) follows if we take the points
(xs(V)zy,...,xs(n) S C{1, n} into the functions

i IS|
[ITa - tespy] el
=1 021°Y -+ 823°

(b)=(a). Without loss of generality, we may assume that n = 2. By some
simple calculation, it is easy to see that

1 1
g = [ @=rap [ M3(rara) (1 = ro)drdrs
0 0

Let | = min{1,p}. By Lemmas 3 and 5, and since M,’,(f, r1,T2) is nonde-
creasing in r1, we obtain

1
/ Mg(f, r1,72)(1 —r)*dr;
0

= /1 (]W;l,(f, 1"1,7’2))q/l(1 - rl)aldrl
0

< o ((Mp(f,1/2,m))"
! 147 q/1 o
+/O ‘Mll,(fs —2—1-,7°2) ‘M:,(f,Tl,TQ)‘ (1—7“1) d’rl)
! of 1+r o
S C(Mg(fa1/2ar2)+/(; A[g(ggy 2 1,7'2)(].'—1"1) +qd1"1> .
Hence
an Nl

1
< ¢ ( / (1= 72)* MI(f 1/2,ra)drs

/ (1-rg )“2/ (6f 12“ 7"2)(1—T1)a1+qd’l'1d7'2).
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Since M q( Bag b ,7‘2) is nondecreasing in r; and applying the changes

% =7, j = 1,2, we obtain

! of 1+m
- q L _ a1+q
/ (1 —~ry)* /0 M (azl 5 ,rg)(l 1) dridrs

(18 < C/ / Mq 7‘1,7‘2)(1—7‘%)a1+q7’1d7"1(1—T‘%)O‘ZTQCZT'Q.

Using again Lemmas 3 and 5, and since MJ(f,1/2,7;) is nondecreasing in
9 We get
(19)
1

/0 (1= 1) ME(f, 1/2, 75)drs

< C<M§(f, 1/2,1/20+ / (1= o)

Mz(f’1,1+7‘2) ( %,7_2> Q/im)
120

It is clear that there is a constant C' independent of f such that
(20)

3/4 af 1 147
_ azt+q pAfq __2
/0 (1= ra)™ ™M (az 2 ) "2

1
C q 1— a2+qu _i
(1ot )i+ [ = rayoagg (2L

q
<C max 'a—f(zl,zg)’
2€D2(0,7/8)

Similar to Lemma 4 we can prove the following inequality
(21)

max -?i(zl,zz)lqs C

Mq(gf,rl,rz)(l 7'1)0‘1(1 r)“2+qdr1dr2
2€D2(0,7/8) 22

(0,1)2

On the other hand, using the change (1 + r3)/2 — r2 we obtain

1
/3 @ -yt (P11 12 g,

/4 822’2, 2

! af 1
— _ cotgpqaf ~J —
= 01/7/8(1 r2) 1\41,(&22,2,7«2)dr2 I

for some C; > 0.
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Using again the monotonicity of the integral means, we obtain that there is
a constant C independent of f such that

1 of 1
- 1 - az+qpar9 d:
h = G T 7/8( r) MY (52, 5 ma ) dry

1 1
= "1"/ (1 —r)dr (1*T2)a2+qu<af72,T2)d7‘2

Cl 7/8 822
1 ! of
< — ay - as+pasq| 2
< Cl/ (I—m1) /7/ (1—ra) Mp<62217'177'2>d7"2d7"1

(22) < C/ /(1~r1) 1~—r)"2+"M‘1( f,Tl,Tg)dedrl

From (17)-(22) the result and the asymptotics in Theorem 2 follow, for
m = 1. Using induction we obtain the result for m > 2.

(c)=>(a). As in the previous case, we may assume that n = 2 and £(0,0) = 0.
From (17)-(19), it follows that we should estimate the following quantities

L = / / Mq ?"1,72)(1 - )"‘1+"r1d1"1(1 — 7‘2)0‘27'2d7'2,
= max z1, 22)|¢
<t BN e 1 1 2

and

1
‘ Of 1 147
Iy = )2t 2~ T Ny,
? /0(1 r2) Wp(azz’z’ 2 Jar:

Using the inequality

Bf q of )
< qgf_ <
”6[;1;(%)3/2) Lazj 21722)’ CM (6z ,r,r2),  §E€{L2} i, €[3/4,1),

which can be proved similar to (8), taking ro = 3/4 for j =1 and r; = 3/4 for
j = 2, it follows that

af 3
< M‘? —
(23) WWE)} 5 enm)| souy(5hmg)
when r; € [3/4,1), and
of af 3
< q
(24) ZED@%/Q){ (e <oMy(3 5,

when r, € [3/4,1).

Multiplying (23) by (1 —r;)* ™, then integrating obtained inequality from
3/4 to 1 with respect to ry, and multiplying (24) by (1 — r9)®2%4 then inte-
grating from 3/4 to 1 with respect to ro, and using inequality (7) with p = ¢,
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we get
1
12 S C(/ (] '-T'1)m+qu(~a—f' ™, §)d’?‘1
3/4 9z
(25) . of 3
_ a2+q g
o [ (2 ),

By Lemma 3 and the inequality (z + y)? < ¢,(z? + yP), z,y > 0, where
¢p = 1 when p € (0,1), and ¢, = 2P~ when p > 1, we obtain that there is a
positive constant C such that

(26) Mq(gi,i,m) <o(m (gf 0,m5) + M’g(aig@’%’m))

and

, 2
gz—{,’r‘l,2> < C(Mq (gf;,m,O) +Mq(6—i8f—zz’ﬁ’z)>'

Multiplying (26) by (1 ~ 72)*2%9, then integrating obtained inequality from 0
to 1 with respect to ro, and multiplying (27) by (1~ r;)®1+9, then integrating
obtained inequality from 0 to 1 with respect to ry, using the monotonicity of
the integral means My (-,r1,72) in each variable and (25), we get

(28)

1
.[2 S C (/ (1 —T%)a2+qu(6—f 0 Tg)d’f'g
0

n) M

Oz

1 af
artqgargf 4
+/ (1 rl) M (azl ,Tl,O)d?"]}
2

17,
/ / )1 — r3) 2t (621gz2,r1,r2)dﬁdr2) =ClL.

Further, using the change 5-'%’*’* — 19, the monotonicity of M,(-,r,72), (27)
and (28), we have that

of

1
. < .
5 2,r2)dr2 <CI,

(29) I = C/ (1- 1 "2+‘1M‘1(
1/2

By Fubini’s theorem, Lemma 5, Lemma 3 and the monotonicity of M,{-,71,72),
it, follows that

L < C(/ Mq(ng rl,—%)(l—?'l)alﬂdn
1

(30) / / 52’15 7‘13?"2) (1 — 7‘%)0‘2+qd7‘2(1 _ T%)al_'_qdrl) .
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From (23)-(30) we see that for the case n = 2, the quantities I;, > and I3
are estimated by a linear combination of the terms

M? DIy 1 2 1—r?)tedr;, S C{1,2
o MGy xsWrsoxs(rn) TTG =y, S € (1.2,

jes 9% ics

from which the implication follows. For the case n > 3 we can use the induction.
O
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