Commun. Korean Math. Soc. 23 (2008), No. 4, pp. 469-477

TWO-SIDED Γ-α-DERIVATIONS IN PRIME AND SEMIPRIME Γ-NEAR-RINGS

Mustafa Kazaz and Akin Alkan

ABSTRACT. We introduce the notion of two-sided Γ - α -derivation of a Γ -near-ring and give some generalizations of [1, 2].

1. Introduction

The notion of Γ -near-rings, as a generalization of near-rings, was introduced by Satyanarayana in [5]. The concept of Γ -derivations in Γ -near-rings was introduced by Jun, Cho, and Kim [4, 6]. In [1], Argaç defined a two-sided α -derivation d of a near-ring. In a similar way, we introduce the notion of two-sided Γ - α -derivation of a Γ -near-ring and we give some generalizations of [1, 2].

Let M be a prime (resp. a semiprime) Γ -near-ring and U be a right invariant (resp. an invariant) subset of M containing 0, and let d be a two-sided Γ - α -derivation on M which acts as a Γ -homomorphism on U, or an anti- Γ homomorphism on U under certain conditions on α , then we showed that d = 0. Finally, if M is a prime Γ -near-ring, U is a nonzero right invariant of M, and d is a nonzero Γ - $(\alpha, 1)$ -derivation of M satisfying d(x + y - x - y) = 0 for all $x, y \in U$, then we prove that (M, +) is abelian.

2. Preliminaries

All near-rings considered in this paper are right distributive. A Γ -near-ring is a triple $(M, +, \Gamma)$, where

- (i) (M, +) is a group (not necessarily abelian),
- (ii) Γ is a non-empty set of binary operations on M such that $(M, +, \gamma)$ is a near-ring for each $\gamma \in \Gamma$,
- (iii) $(x\beta y)\gamma z = x\beta(y\gamma z)$ for all $x, y, z \in M$ and $\beta, \gamma \in \Gamma$.

A Γ -near-ring M is said to be zero-symmetric Γ -near-ring if $x\gamma 0 = 0$ for all $x \in M$ and $\gamma \in \Gamma$.

O2008 The Korean Mathematical Society

469

Received January 4, 2008; Revised May 7, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16Y30, 16W25, 16U80.

Key words and phrases. Γ -near-ring, prime Γ -near-ring, semiprime Γ -near-ring, two-sided Γ - α -derivation.

Let M be a Γ -near-ring. A subset U of M is said to be right (resp. left) invariant if $a\gamma x \in U$ (resp. $x\gamma a \in U$) for all $a \in U, \gamma \in \Gamma$ and $x \in M$. We say that U is invariant, if U is both right and left invariant. A Γ -near-ring M is said to be prime Γ -near-ring if $x\Gamma M\Gamma y = \{0\}$ for $x, y \in M$ implies x = 0 or y = 0, and semiprime Γ -near-ring if $x\Gamma M\Gamma x = \{0\}$ for $x \in M$ implies x = 0.

A Γ -derivation on M is defined to be an additive endomorphism d of M satisfying the product rule

$$d(x\gamma y) = d(x)\gamma y + x\gamma d(y)$$

for all $x, y \in M$ and $\gamma \in \Gamma$, or equivalently

$$d(x\gamma y) = x\gamma d(y) + d(x)\gamma y$$

for all $x, y \in M$ and $\gamma \in \Gamma$ (see [6]).

If M and M' are two Γ -near-rings, then a mapping $f: M \to M'$ such that f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$ (resp. $f(x\gamma y) = f(y)\gamma f(x)$), for all $x, y \in M$ and $\gamma \in \Gamma$, is called a Γ -near-ring homomorphism (resp. an anti- Γ -near-ring homomorphism) on M. Let S be a nonempty subset of M and let d be a Γ -derivation on M. If $d(x\gamma y) = d(x)\gamma d(y)$ (resp. $d(x\gamma y) = d(y)\gamma d(x)$) for all $x, y \in S$ and $\gamma \in \Gamma$, then d is said to act as a Γ -homomorphism (resp. an anti- Γ -homomorphism) on S.

An additive endomorphism $d: M \to M$ of a Γ -near-ring M is called a Γ - (α, β) -derivation on M if there exist two functions $\alpha, \beta: M \to M$ such that the following product rule holds:

$$d(x\gamma y) = d(x)\gamma\alpha(y) + \beta(x)\gamma d(y)$$

for all $x, y \in M$ and $\gamma \in \Gamma$. One can easily show that if d is a Γ - (α, β) -derivation on M such that $\alpha(x + y) = \alpha(x) + \alpha(y)$ and $\beta(x + y) = \beta(x) + \beta(y)$, then

$$d(x\gamma y) = \beta(x)\gamma d(y) + d(x)\gamma \alpha(y).$$

An additive mapping $d: M \to M$ is called a two-sided Γ - α -derivation if d is a Γ - $(\alpha, 1)$ -derivation as well as a Γ - $(1, \alpha)$ -derivation. We should note that if $\alpha = 1$, then a two-sided Γ - α -derivation is just a Γ -derivation.

Example. Let M_1 be a zero-symmetric Γ -near-ring and let M_2 be a Γ -ring (for Γ -rings, see [3]). Let us define $d: M_1 \oplus M_2 \to M_1 \oplus M_2$ by $d((m_1, m_2)) = (0, d_2(m_2))$ and $\alpha: M_1 \oplus M_2 \to M_1 \oplus M_2$ by $\alpha((m_1, m_2)) = (d_1(m_1), 0)$, where d_1 is any map on M_1 and d_2 is a Γ -right and left M_2 -module map on M_2 which is not a derivation. Then it can be shown that d is a two sided Γ - α -derivation, but not a Γ -derivation.

3. The results

In order to derive our main results we first give the following lemmas.

Lemma 3.1. Let M be a prime Γ -near-ring and let U be a nonzero invariant of M. If a + b - a - b = 0 for all $a, b \in U$, then (M, +) is abelian.

470

Proof. Since U is a nonzero invariant of M, we have $x\gamma a, y\gamma a \in U$ for all $a \in U$, $x, y \in M$ and $\gamma \in \Gamma$. Thus, by the hypothesis, we have $x\gamma a+y\gamma a-x\gamma a-y\gamma a=0$ for all $a \in U$, $x, y \in M$ and $\gamma \in \Gamma$. Then we obtain $(x + y - x - y)\gamma a = 0$ for all $a \in U$, $x, y \in M$ and $\gamma \in \Gamma$. In particularly, $(x + y - x - y)\Gamma U = (x + y - x - y)\Gamma M \Gamma U = 0$. Since M is a prime Γ -near-ring and U is a nonzero invariant, we get x+y-x-y=0 for all $x, y \in M$. Hence (M, +) is abelian. \Box

Lemma 3.2. Let M be a prime Γ -near-ring, U be a nonzero invariant of M which contains 0, and d a Γ - $(\alpha, 1)$ -derivation on M. If d acts as an anti- Γ -homomorphism on U and $\alpha(0) = 0$, then $x\gamma 0 = 0$ for all $x \in U$ and $\gamma \in \Gamma$.

Proof. Since $0\gamma x = 0$ for all $x \in U$ and $\gamma \in \Gamma$, and d acts as an anti- Γ -homomorphism on U, it follows that $d(x)\gamma 0 = 0$. If we take $x\gamma 0$ instead of x, we obtain $d(x)\gamma \alpha(0) + x\gamma 0 = 0$ for all $x \in U$ and $\gamma \in \Gamma$. Then we get $x\gamma 0 = 0$ for all $x \in U$ and $\gamma \in \Gamma$.

Lemma 3.3. Let M be a Γ -near-ring and U be an invariant of M. If d is a two-sided Γ - α -derivation of M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$, then

$$n\mu(d(x)\gamma\alpha(y) + x\gamma d(y)) = n\mu d(x)\gamma\alpha(y) + n\mu x\gamma d(y)$$

for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$. Furthermore, if $\alpha(U) = U$, then for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$

 $n\mu(d(x)\gamma y + \alpha(x)\gamma d(y)) = n\mu d(x)\gamma y + n\mu\alpha(x)\gamma d(y).$

Proof. For all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$, we have

$$d(n\mu(x\gamma y)) = d(n)\mu\alpha(x\gamma y) + n\mu d(x\gamma y)$$

$$= d(n)\mu\alpha(x)\gamma\alpha(y) + n\mu(d(x)\gamma\alpha(y) + x\gamma d(y)).$$

On the other hand, for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$,

$$d((n\mu x)\gamma y) = d(n\mu x)\gamma\alpha(y) + n\mu x\gamma d(y)$$

= $(d(n)\mu\alpha(x) + n\mu d(x))\gamma\alpha(y) + n\mu x\gamma d(y)$
= $d(n)\mu\alpha(x)\gamma\alpha(y) + n\mu d(x)\gamma\alpha(y) + n\mu x\gamma d(y).$

From these two expressions of $d(n\mu x\gamma y)$, we obtain that, for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$,

$$n\mu(d(x)\gamma\alpha(y) + x\gamma d(y)) = n\mu d(x)\gamma\alpha(y) + n\mu x\gamma d(y),$$

By a similar way, we obtain that, for all $n, x, y \in U$ and $\gamma, \mu \in \Gamma$,

 $n\mu(d(x)\gamma y + \alpha(x)\gamma d(y)) = n\mu d(x)\gamma y + n\mu\alpha(x)\gamma d(y).$

Lemma 3.4. Let M be a prime Γ -near-ring and U be a nonzero invariant of M. Let d be a nonzero Γ - $(\alpha, 1)$ -derivation on M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $x \in M$ and $x\gamma d(U) = \{0\}$, then x = 0.

Proof. Suppose that $x\gamma d(U) = \{0\}$. Then $x\gamma d(u\mu y) = 0$ for all $y \in M, u \in U$ and $\mu \in \Gamma$. Thus $0 = x\gamma (d(u)\mu\alpha(y) + u\mu d(y)) = x\gamma u\mu d(y)$ for all $y \in M, u \in U$ and $\mu \in \Gamma$. Then we have $x\Gamma U\Gamma d(y) = \{0\}$ for all $y \in M$. Since d is nonzero, U is a nonzero invariant and M is prime, it follows that x = 0.

Lemma 3.5. Let M be a prime Γ -near-ring and U be a nonzero invariant of M. Let d be a nonzero Γ - $(\alpha, 1)$ -derivation on M. If d(x + y - x - y) = 0 for all $x, y \in U$, then $(x + y - x - y)\gamma d(z) = 0$ for all $x, y, z \in U$ and $\gamma \in \Gamma$.

Proof. Assume that d(x + y - x - y) = 0 for all $x, y \in U$. By taking $y\gamma z$ and $x\gamma z$ instead of y and x, respectively (where $z \in U$ and $\gamma \in \Gamma$) we obtain

$$0 = d((x + y - x - y)\gamma z)$$

= $d(x + y - x - y)\gamma\alpha(z) + (x + y - x - y)\gamma d(z)$
= $(x + y - x - y)\gamma d(z)$

for all $x, y, z \in U$ and $\gamma \in \Gamma$.

Lemma 3.6. Let M be a Γ -near-ring and U be an invariant of M. Let d be a Γ - $(\alpha, 1)$ -derivation on M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U, \gamma \in \Gamma$ and $\alpha(U) = U$.

(i) If d acts as a Γ -homomorphism on U, then

 $d(y)\mu x\gamma d(y) = y\mu x\gamma d(y) = d(y)\mu x\gamma \alpha(y)$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$.

(ii) If d acts as an anti- Γ -homomorphism on U, then

$$d(y)\gamma x\gamma d(y) = x\gamma y\gamma d(y) = d(y)\gamma \alpha(y)\gamma x$$

for all $x, y \in U$ and $\gamma \in \Gamma$.

Proof. (i) Assume that d acts as a Γ -homomorphism on U. Then

(1)
$$d(x\gamma y) = d(x)\gamma\alpha(y) + x\gamma d(y) = d(x)\gamma d(y)$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Taking $y \mu x$ instead of x in (1), we get $d(y \mu x) \gamma \alpha(y) + y \mu x \gamma d(y) = d(y \mu x) \gamma d(y)$

(2)
$$= d(y)\mu d(x)\gamma d(y)$$

 $= d(y)\mu d(x\gamma y)$

 \Box

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$. By Lemma 3.3, we can write $d(y)\mu d(x\gamma y) = d(y)\mu d(x)\gamma \alpha(y) + d(y)\mu x\gamma d(y)$

$$= d(y\mu x)\gamma\alpha(y) + d(y)\mu x\gamma d(y).$$

Using this relation in (2), we get

$$y\mu x\gamma d(y) = d(y)\mu x\gamma d(y).$$

Similarly, taking $y \mu x$ instead of y in (1) gives

(3) $d(x)\gamma\alpha(y\mu x) + x\gamma d(y\mu x) = d(x)\gamma d(y\mu x) = d(x\gamma y)\mu d(x).$

On the other hand, for all $x, y \in U$ and $\gamma, \mu \in \Gamma$

$$d(x\gamma y)\mu d(x) = (d(x)\gamma\alpha(y) + x\gamma d(y))\mu d(x)$$

= $d(x)\gamma\alpha(y)\mu d(x) + x\gamma d(y)\mu d(x)$
= $d(x)\gamma\alpha(y)\mu d(x) + x\gamma d(y\mu x).$

Using this relation in (3), we obtain

$$d(x)\gamma\alpha(y\mu x) = d(x)\gamma\alpha(y)\mu d(x)$$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$. By hypothesis, we get

$$d(x)\gamma\alpha(y)\mu\alpha(x) = d(x)\gamma\alpha(y)\mu d(x).$$

Since $\alpha(U) = U$, it obvious that

$$d(x)\gamma w\mu\alpha(x) = d(x)\gamma w\mu d(x)$$

for all $x, w \in U$ and $\gamma, \mu \in \Gamma$. That is, for all $x, y \in U$ and $\gamma, \mu \in \Gamma$ $d(y)\mu x\gamma d(y) = d(y)\mu x\gamma \alpha(y).$

(ii) Since d acts as an anti- Γ -homomorphism on U, we have

(4)
$$d(x\gamma y) = d(x)\gamma\alpha(y) + x\gamma d(y) = d(y)\gamma d(x)$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Taking $x\gamma y$ instead of y in (4) gives

$$\begin{aligned} d(x)\gamma\alpha(x\gamma y) + x\gamma d(x\gamma y) &= d(x\gamma y)\gamma d(x) \\ &= \left(d(x)\gamma\alpha(y) + x\gamma d(y)\right)\gamma d(x) \\ &= d(x)\gamma\alpha(y)\gamma d(x) + x\gamma d(y)\gamma d(x) \\ &= d(x)\gamma\alpha(y)\gamma d(x) + x\gamma d(x\gamma y). \end{aligned}$$

From this relation, we get

$$d(x)\gamma\alpha(x\gamma y) = d(x)\gamma\alpha(y)\gamma d(x).$$

Since $\alpha(U) = U$, we have

$$d(x)\gamma\alpha(x)\gamma y = d(x)\gamma y\gamma d(x).$$

Similarly, taking $x\gamma y$ instead of x in (4) gives the relation

$$d(y)\gamma x\gamma d(y) = x\gamma y\gamma d(y).$$

Theorem 3.7. Let M be a semiprime Γ -near-ring and U be an invariant subset of M containing 0. Let d be a two-sided Γ - α -derivation on M such that $\alpha(U) = U$ and $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$.

- (i) If d acts as a Γ -homomorphism on U, then $d(U) = \{0\}$.
- (ii) If d acts as an anti- Γ -homomorphism on U, then $d(U) = \{0\}$.

Proof. (i) Suppose that d acts as a Γ -homomorphism on U. Then Lemma 3.6 gives

(5)
$$d(y)\mu x\gamma d(y) = d(y)\mu x\gamma \alpha(y)$$

for all $x, y \in U$ and $\gamma, \mu \in \Gamma$. Right multiplying (5) by d(z), and using the hypothesis that d acts as a Γ -homomorphism on U together with Lemma 3.3, we get $d(y)\mu x\gamma d(y)\mu \alpha(z) = 0$ for all $x, y, z \in U$ and $\gamma, \mu \in \Gamma$. Since $\alpha(U) = U$, $d(y)\mu x\gamma d(y)\mu z = 0$ for all $x, y, z \in U$ and $\gamma, \mu \in \Gamma$. Taking $z\eta m$ instead of x, where $m \in M, z \in U$, and $\eta \in \Gamma$, we obtain $d(y)\mu z\eta m\gamma d(y)\mu z = 0$ for all $x, y, z \in U$. In particular, $d(y)\mu z\Gamma M\Gamma d(y)\mu z = 0$. By the semiprimness of M we obtain that $d(y)\mu z = 0$. Since $\alpha(U) = U$, it is clear that

(6)
$$d(y)\mu\alpha(z) = 0$$

for all $y, z \in U$ and $\mu \in \Gamma$. Substituting $y\eta n$ for y in (6) and left multiplying (6) by d(z), we get $d(z)\beta d(y)\eta n\mu\alpha(z)+d(z)\beta y\eta d(n)\mu\alpha(z)=0$, where $z \in U, \beta \in \Gamma$. Since the second summand is zero by (6), we get

$$0 = d(z)\beta d(y)\eta n\mu\alpha(z) = d(z\beta y)\eta n\mu\alpha(z)$$

= $d(z)\beta\alpha(y)\eta n\mu\alpha(z) + z\beta d(y)\eta n\mu\alpha(z)$
= $z\beta d(y)\eta n\mu\alpha(z)$

for all $n \in M, x, y, z \in U$ and $\gamma, \mu, \beta \in \Gamma$. Since $\alpha(U) = U$, $z\beta d(y)\eta n\mu w = 0$, where $w \in U$. Taking $z\beta d(y)$ instead of w, we obtain $z\beta d(y)\eta n\mu z\beta d(y) = 0$. Since M is semiprime, we have

(7)
$$z\beta d(y) = 0$$

for all $y, z \in U$ and $\beta \in \Gamma$. Combining (6) and (7) gives that $d(y)\beta\alpha(z) + y\beta d(z) = d(y\beta z) = 0$ for all $y, z \in U$ and $\beta \in \Gamma$. In particular, $d(z\gamma m\beta z) = 0$ for all $m \in M, z \in U$ and $\gamma, \beta \in \Gamma$. Since d acts as a Γ -homomorphism on U, we have

$$0 = d(z\gamma m)\beta d(z) = d(z)\gamma \alpha(m)\beta d(z) + z\gamma d(m)\beta d(z).$$

The second summand is zero by (7). Thus, since $\alpha(U) = U$ and by the semiprimness of M we conclude that d(z) = 0 for all $z \in U$.

(ii) Assume that d acts as an anti- Γ -homomorphism on U. First, we note that $a\gamma 0 = 0$ for all $a \in U$ and $\gamma \in \Gamma$ by Lemma 3.2. By Lemma 3.6 we have

(8)
$$x\gamma y\gamma d(y) = d(y)\gamma x\gamma d(y)$$

for all $x, y \in U$ and $\gamma \in \Gamma$,

(9)
$$d(y)\gamma\alpha(y)\gamma x = d(y)\gamma x\gamma d(y)$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by $x\gamma d(y)$ in (8) and using Lemma 3.6, we get

(10)
$$\begin{aligned} x\gamma d(y)\gamma y\gamma d(y) &= d(y)\gamma x\gamma d(y\gamma y) = d(y)\gamma x\gamma (d(y\gamma \alpha(y) + y\gamma d(y))) \\ &= d(y)\gamma x\gamma d(y)\gamma \alpha(y) + d(y)\gamma x\gamma y\gamma d(y). \end{aligned}$$

Substituting $x\gamma y$ for x in (8), we have

(11)
$$x\gamma y\gamma y\gamma d(y) = d(y)\gamma x\gamma y\gamma d(y)$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Right-multiplying (8) by $\alpha(y)$, we obtain

(12) $x\gamma y\gamma d(y)\gamma \alpha(y) = d(y)\gamma x\gamma d(y)\gamma \alpha(y)$

for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by y in (8) we get $y\gamma y\gamma d(y) = d(y)\gamma y\gamma d(y)$. Now left-multiplying this relation by x gives

(13)
$$x\gamma y\gamma y\gamma d(y) = x\gamma d(y)\gamma y\gamma d(y)$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Putting (11), (12), and (13) in (10) gives

$$x\gamma y\gamma d(y)\gamma \alpha(y) = 0$$

In particular, $y\gamma n\gamma y\gamma d(y)\gamma \alpha(y) = 0$, where $n \in M$. Hence

$$y\gamma d(y)\gamma \alpha(y)\gamma M\gamma y\gamma d(y)\gamma \alpha(y) = 0.$$

By the semiprimeness of M

(14)
$$y\gamma d(y)\gamma \alpha(y) = 0$$

for all $x, y \in U$ and $\gamma \in \Gamma$. According to (12) we get $d(y)\gamma x\gamma d(y)\gamma \alpha(y) = 0$. Using this relation in (9), we have

(15)
$$d(y)\gamma\alpha(y)\gamma x\gamma\alpha(y) = 0$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by $x\gamma n\gamma d(y)$ in (15), we have

$$d(y)\gamma\alpha(y)\gamma x\gamma\alpha(y) = d(y)\gamma\alpha(y)\gamma x\gamma n\gamma d(y)\gamma\alpha(y)\gamma x = 0$$

for all $x, y \in U, n \in M$ and $\gamma \in \Gamma$. Hence

(16)
$$d(y)\gamma\alpha(y)\gamma x = 0$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Using (16) in (9), we obtain $d(y)\gamma x\gamma d(y) = 0$, and so we get

$$d(y)\gamma x\gamma n\gamma d(y)\gamma x = 0$$

for all $x, y \in U, n \in M$ and $\gamma \in \Gamma$. Hence

(17)
$$d(y)\gamma x = 0$$

for all $x, y \in U$ and $\gamma \in \Gamma$. Therefore $x\gamma d(z)\gamma d(y\gamma n)\gamma x = 0$ for all $x, y, z \in U, n \in M$ and $\gamma \in \Gamma$. Thus

$$0 = x\gamma d(z)\gamma (d(y)\gamma n + \alpha(y)\gamma d(n))\gamma x = x\gamma d(z)\gamma d(y)\gamma \alpha(y)\gamma d(n)\gamma x$$

for all $x, y, z \in U, n \in M$ and $\gamma \in \Gamma$. Since $\alpha(U) = U$ the second summand is zero by (17). Hence $x\gamma d(z)\gamma d(y)\gamma N\gamma x = \{0\}$, and then

$$x\gamma d(z)\gamma d(y)\gamma N\gamma x\gamma d(z)\gamma d(y) = \{0\}.$$

Because M is semiprime, we get

$$0 = x\gamma d(z)\gamma d(y) = x\gamma d(y\gamma z).$$

Therefore

$$0 = x\gamma d(y)\gamma z + x\gamma \alpha(y)\gamma d(z) = x\gamma \alpha(y)\gamma d(z).$$

In particular

$$0 = \alpha(y)\gamma d(z)\gamma n\gamma \alpha(y)\gamma d(z).$$

Hence $0 = \alpha(y)\gamma d(z)$. By (17), we obtain $0 = d(x\gamma y)$ for all $x, y \in U$. Thus $d(x\gamma x\gamma n) = 0$ for all $x \in U, n \in M$ and $\gamma \in \Gamma$. Thus

$$0 = d(x\gamma n)\gamma d(x)$$

= $(d(x)\gamma n + \alpha(x)\gamma d(n))\gamma d(x)$
= $d(x)\gamma n\gamma d(x) + \alpha(x)\gamma d(n)\gamma d(x)$
= $d(x)\gamma n\gamma d(x) + \alpha(x)\gamma d(x\gamma n).$

Since the second summand is zero, we get $d(x)\gamma n\gamma d(x) = 0$. Therefore d(x) = 0 for all $x \in U$.

Corollary 3.8. Let M be a semiprime Γ -near-ring and d be a two-sided Γ - α -derivation of M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$.

- (i) If d acts as a Γ -homomorphism on M, then d = 0.
- (ii) If d acts as an anti- Γ -homomorphism on M and $\alpha(0) = 0$, then d = 0.

Corollary 3.9. Let M be a prime Γ -near-ring and let U be a nonzero invariant subset of M such that $0 \in U$. Let d be a two-sided Γ - α -derivation of M such that $\alpha(U) = U$ and $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in M$ and $\gamma \in \Gamma$.

- (i) If d acts as a Γ -homomorphism on M, then d = 0.
- (ii) If d acts as an anti- Γ -homomorphism on M and $\alpha(0) = 0$, then d = 0.

Proof. By Theorem 3.7, we have d(x) = 0 for all $x \in U$. Taking $x\gamma a$ instead of x, where $x \in U, a \in M$ and $\gamma \in \Gamma$, then we have $0 = d(x\gamma a) = d(x)\gamma\alpha(a) + x\gamma d(a) = x\gamma d(a)$. Substituting $x\mu b$ for x in the last expression, where $x \in U, b \in M$ and $\gamma \in \Gamma$, we get $x\mu b\gamma d(a) = 0$. In particular, $x\Gamma M\Gamma d(a) = \{0\}$. By the primness of M, since U is a nonzero invariant subset of M, we have d(a) = 0 for all $a \in M$.

Theorem 3.10. Let M be a prime Γ -near-ring, U be a nonzero invariant of M and d be a nonzero Γ - $(\alpha, 1)$ -derivation of M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If d(x+y-x-y) = 0 for all $x, y \in U$, then (M, +) is abelian.

Proof. Suppose that d(x + y - x - y) = 0 for all $x, y \in U$. By Lemma 3.5, we have $(x + y - x - y)\gamma d(z) = 0$ for all $x, y, z \in U$ and $\gamma \in \Gamma$. Since $d \neq 0$, it follows that x + y - x - y = 0 for all $x, y \in U$ by Lemma 3.4. Hence (M, +) is abelian by Lemma 3.1.

Corollary 3.11. Let M be a prime Γ -near-ring and U be a nonzero invariant of M and d be a nonzero Γ - $(\alpha, 1)$ -derivation of M such that $\alpha(x\gamma y) = \alpha(x)\gamma\alpha(y)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If d + d is additive on U, then (M, +) is abelian.

476

Example. Let $M = M_1 \oplus M_2$, where M_1 and M_2 are prime Γ -near-rings. Let us define $d : M \to M$ by $d((m_1, m_2)) = (0, m_2)$ and $\alpha : M \to M$ by $\alpha((m_1, m_2)) = (m_1, 0)$ for all $(m_1, m_2) \in M$. Then d is a two-sided Γ - α -derivation on M. On the other hand, it can be shown that d acts as a Γ -homomorphism on M and

$$\alpha\big((m_1, m_2)\gamma(m_1', m_2')\big) = \alpha\big((m_1, m_2)\big)\gamma\alpha\big((m_1', m_2')\big)$$

for all $(m_1, m_2), (m'_1, m'_2) \in M$ and $\gamma \in \Gamma$. One can also show that if M_2 is commutative, then d acts as an anti-homomorphism on M. Now, if M_2 is abelian, then d(m+m'-m-m') = 0 for all $m = (m_1, m_2), m' = (m'_1, m'_2) \in M$. But $d \neq 0$ and (M, +) is not abelian. Therefore primeness condition on M in Corollary 3.9 and Theorem 3.10 cannot be omitted.

References

- [1] N. Argaç, On near rings with two-sided α -derivations, Turkish J. Math. **28** (2004), 195–204.
- [2] _____, On prime and semiprime near rings with derivations, Internat. J. Math. and Math. Sci. 20 (1997), no. 4, 737–740.
- [3] W. E. Barnes, On the $\Gamma\text{-rings}$ of Nobusawa, Pacific J. Math. 18 (1966), no. 3, 411–422.
- [4] Y. U. Cho and Y. B. Jun, Gamma-derivation in prime and semiprime gamma-near-rings, Indian J. Pure Appl. Math. 33 (2002), no. 10, 1489–1494.
- [5] B. Satayanarayana, Contributions to Near-ring Theory, Doctoral Thesis, Nagarjuna University, India, 1984.
- [6] Y. B. Jun, K. H. Kim, and Y. U. Cho, On gamma-derivations in gamma near-rings, Soochow J. Math. 29 (2003), no. 3, 275–282.

Mustafa Kazaz Department of Mathematics Faculty of Science University of Celal Bayar Muradiye Campus, 45047, Manisa, Turkey *E-mail address*: m_kazaz@hotmail.com

Akin Alkan Department of Mathematics Faculty of Science University of Celal Bayar Muradiye Campus, 45047, Manisa, Turkey