• Title/Summary/Keyword: $p-GSK3{\beta}$

Search Result 38, Processing Time 0.028 seconds

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

Anti-proliferative Activity of Ethanol Extracts of Root of Aralia cordata var. continentalis through Proteasomal Degradation of Cyclin D1 in Human Colorectal Cancer Cells (독활 에탄올 추출물의 대장암 세포에서 Cyclin D1 단백질 분해 유도를 통한 세포 생육 억제활성)

  • Park, Su Bin;Park, Gwang Hun;Song, Hun Min;Park, Ji Hye;Shin, Myeong Su;Son, Ho Jun;Um, Yurry;Jeong, Jin Boo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • Background: In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the root of Aralia cordata var. continentalis (Kitagawa) Y. C. Chu (RAc-E70) against human colorectal cancer cells. Methods and Results: RAc-E70 suppressed the proliferation of the human colorectal cancer cell lines, HCT116 and SW480. Although RAc-E70 reduction cyclin D1 expression at the protein and mRNA levels, RAc-E70-induced reduction in cyclin D1 protein level occurred more dramatically than that of cyclin D1 mRNA. The RAc-E70-induced downregulation of cyclin D1 expression was attenuated in the presence of MG132. Additionally, RAc-E70 reduced HA-cyclin D1 levels in HCT116 cells transfected with HA-tagged wild type-cyclin D1 expression vector. RAc-E70-mediated cyclin D1 degradation was blocked in the presence of LiCl, a $GSK3{\beta}$ inhibitorbut, but not PD98059, an ERK1/2 inhibitor and SB203580, a p38 inhibitor. Furthermore, RAc-E70 phosphorylated cyclin D1 at threonine-286 (T286), and LiCl-induced $GSK3{\beta}$ inhibition reduced the RAc-E70-mediated phosphorylation of cyclin D1 at T286. Conclusions: Our results suggested that RAc-E70 may downregulate cyclin D1 expression as a potential anti-cancer target through $GSK3{\beta}$-dependent cyclin D1 degradation. Based on these findings, RAc-E70 maybe a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

Anti-Proliferative Activity of Ethanol Extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) Through Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Park, Su Bin;Park, Ji Hye;Shin, Myeong Su;Son, Ho-Jun;Um, Yurry;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.640-646
    • /
    • 2017
  • In this study, we elucidated anti-cancer activity and potential molecular mechanism of 70% ethanol extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) (TR-E70) against human colorectal cancer cells. Anti-cell proliferative effect of TR-E70 was evaluated by MTT assay. The effect of TR-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. TR-E70 suppressed the proliferation of human colorectal cancer cell lines, HCT116 and SW480. Although TR-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by TR-E70 more dramatically occurred than that of cyclin D1 mRNA. Cyclin D1 downregulation by TR-E70 was attenuated in presence of MG132. In addition, TR-E70 phosphorylated threonine-286 (T286) of cyclin D1. TR-E70-mediated cyclin D1 degradation was blocked in presence of LiCl as an inhibitor $GSK3{\beta}$ but not PD98059 as an ERK1/2 inhibitor and SB203580 as a p38 inhibitor. Our results suggest that TR-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through $GSK3{\beta}$-dependent cyclin D1 degradation. From these findings, TR-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

Cancer Chemoprevention Effects of Geldanamycin and 17-AAG in Human Oral Squamous Cell Carcinoma (Geldanamycin과 17-AAG가 구강편평세포암종 세포주에 미치는 암예방 효과)

  • Lee, Eun Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.462-469
    • /
    • 2018
  • HSP90 regulates various proteins involved in differentiation and cell survival. Levels of HSP90 tend to increase during development of squamous cell carcinoma in the head and neck including the mouth. Thus, many studies have been conducted to treat these cancers through suppression of HSP90. This study investigated the effect of two HSP90 inhibitors, geldanamycin and 17-AAG, on the proliferation, apoptosis, and invasion of human oral squamous cell carcinoma cells. Cell survival and cell cycle analyses, as well as western blot analysis, were performed with oral cancer cell lines, YD-10B and YD-38. After treatment with HSP90 inhibitors, cell proliferation was significantly inhibited. When YD-10B and YD-38 cells were treated with various concentrations of geldanamycin and 17-AAG (0, 0.1, 0.3, 1 and $10{\mu}M$) for 24 hr, the growth of YD-10B cells was markedly reduced compared to that of YD-38 cells. Thereafter, the cells were subjected to flow cytometry, which revealed G2 arrest. These results demonstrated that geldanamycin induced G2 arrest and inhibited cell proliferation through the $p-GSK-3{\beta}$ pathway in YD-10B and YD-38 cells, thus inhibiting cell survival. HSP90 inhibitors are therefore expected to have a therapeutic effect on various cancer cell lines.

Effects of Delphinidin in Anthocyanin on MDA-MB-231 Breast Cancer Cells (Anthocyanin의 Delphinidin이 MDA-MB-231 유방암세포에 미치는 영향)

  • Jang, Hye-Yeon;Lee, Song-Hee;An, In-Jung;Lee, Hae-Nim;Kim, Hye-Ri;Park, Young-Seok;Park, Byung-Kwon;Kim, Byeong-Soo;Kim, Sang-Ki;Cho, Sung-Dae;Nam, Jeong-Seok;Choi, Chang-Sun;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • This research showed that delphinidin, an anthocyanin present in blueberry, induced apoptosis in MDA-MB-231 breast cancer cells as well as mediated anti-cancer effects in vivo. As a result, growth of cancer cells as assessed by MTT assay decreased in a concentration-dependent manner. Chromatin condensation by DAPI staining significantly increased in a concentration-dependent manner, indicating apoptosis. The level of p53-protein increased while those of anti-apoptotic molecules (Bcl-2, p-$GSK3{\beta}$) decreased in the western blot. Tumor size decreased in cells treated with 10 mg/kg of delphinidin compared with the control group in vivo. Cell apoptosis assessed by TUNEL assay significantly increased, and tumor inhibitory effect was confirmed. Therefore, delphinidin can be developed for cancer preventive medicine due to its growth inhibitory effects and induction of apoptosis in human breast cancer cells.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1

  • Aayadi, Hoda;Mittal, Smriti P.K.;Deshpande, Anjali;Gore, Makarand;Ghaskadbi, Saroj S.
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.560-565
    • /
    • 2017
  • Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta ($GSK-3{\beta}$). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity.

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

The Hair Growth Effects of Wheat Bran (밀기울의 모발 성장 효과)

  • Kang, Jung-Il;Moon, Jungsun;Kim, Eun-Ji;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

Hair-growth Promoting Effect of Grateloupia elliptica Via the Activation of Wnt Pathway (참도박의 Wnt 경로 활성화를 통한 모발성장 효과)

  • Kang, Jung-Il;Kim, Sang-Cheol;Jeon, You-Jin;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • Grateloupia elliptica has been reported to have the proliferation effect of dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. In the present study, we examined in vitro and in vivo hair growth-promoting effect of Grateloupia elliptica. When isolated rat vibrissa follicles were treated with extract of G. elliptica, the hair-fiber lengths of the vibrissa follicles significantly increased. Furthermore, the G. elliptica extract accelerated the telogen-angen transition in C57BL/6 mice. To investigate the molecular mechanisms of the G. elliptica extract on the proliferation of DPCs, we examined the activation of $wnt/{\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. The G. elliptica extract activated $wnt/{\beta}$-catenin signaling via the increase of ${\beta}$-catenin and phospho-$GSK3{\beta}$. In addition, the G. elliptica extract increased the level of cyclin E and CDK2, while the level of $p27^{kip1}$ was decreased. These results suggest that the the G. elliptica extract may induce hair growth by proliferation of DPCs via cell-cycle progression and the activation of $Wnt/{\beta}$-catenin signaling.