Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young (Department of Orthodontics, School of Dentistry, Seoul National University) ;
  • Yang, Daum (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Kim, Ha-Neui (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Jung, Kyoung-Suk (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University) ;
  • Chang, Young-Il (Department of Orthodontics, School of Dentistry, Seoul National University) ;
  • Lee, Zang-Hee (Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University)
  • 발행 : 2009.06.30

초록

Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

키워드

참고문헌

  1. Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE. Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to loadbearing and requires estrogen receptor alpha. J Biol Chem. 2007;282:20715-27 https://doi.org/10.1074/jbc.M703224200
  2. Bain G, Muller T, Wang X, Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun. 2003;301:84-91 https://doi.org/10.1016/S0006-291X(02)02951-0
  3. Bartold PM, Shi S, Gronthos S. Stem cells in the periodontal ligament. Periodontol. 2000 2006;40:164-72 https://doi.org/10.1111/j.1600-0757.2005.00139.x
  4. Basdra EK, Komposch G. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod. 1997;19:615-21 https://doi.org/10.1093/ejo/19.6.615
  5. Bellows CG, Melcher AH, Aubin JE. Association between tension and orientation of periodontal ligament fibroblasts and exogenous collagen fibers in collagen gels in vitro. J Cell Sci. 1982;58:125-38
  6. Bodine PN, Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord. 2006;7:33-9 https://doi.org/10.1007/s11154-006-9002-4
  7. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42:606-15 https://doi.org/10.1016/j.bone.2007.12.224
  8. Cadigan KM, Nusse R. Wnt signaling: A common theme in animal development. Genes Dev. 1997;11:3286-305 https://doi.org/10.1101/gad.11.24.3286
  9. Cho MI, Lin WL, Moshier A, Ramakrishnan PR. In vitro formation of mineralized nodules by periodontal ligament cells from the rat. Calcif Tissue Int. 1992;50:459-67 https://doi.org/10.1007/BF00296778
  10. Cho YM, Suh CH, Chun SW, Kim EC, Kang KH. Effects of substance P on mineralization markers and heme oxygenase-1 expression in human immortalized periodontal ligament cells. Int J Oral Biol. 2008;33:131-5
  11. Choi YS, Jang HS, Lee DS, Kim HJ, Park JT, Bae HS, Park JC. The effecto of UNCL inactivation on the expression of mechanical stress related genes in cultured human PDL fibroblasts. Int J Oral Biol. 2008;33:51-8
  12. Chun JS, Oh H, Yang S, Park M. Wnt signaling in cartilage development and degeneration. BMB Rep. 2008;41:485-94
  13. Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am. 1988; 32:411-35
  14. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006;16:151-8 https://doi.org/10.1016/j.tcb.2006.01.001
  15. Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway. J. Cell Sci. 2003;116:2627-34 https://doi.org/10.1242/jcs.00623
  16. Lekic P, McCulloch CA. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat Rec. 1996;245:327-41 https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<327::AID-AR15>3.0.CO;2-R
  17. Liu F, Kohlmeier S, Wang CY. Wnt signaling and skeletal development. Cell Signal 2008;20:999-1009 https://doi.org/10.1016/j.cellsig.2007.11.011
  18. Miller JR. The Wnts. Genome Biol. 2002;3:3001.1-15
  19. Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 1999;18:7860-72 https://doi.org/10.1038/sj.onc.1203245
  20. Norvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta-catenin signaling in osteoblast. Calcif Tissue Int. 2004;75:396-404 https://doi.org/10.1007/s00223-004-0213-y
  21. Saito M, Saito S, Ngan PW, Shanfeld J, Davidovictch Z. Interleukine-1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dent Orthop. 1991;99:226-40 https://doi.org/10.1016/0889-5406(91)70005-H
  22. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149-55 https://doi.org/10.1016/S0140-6736(04)16627-0
  23. Shirai K, Ishisaki A, Kaku T, Tamura M, Furuichi Y. Multipotency of clonal cells derived from swine periodontal ligament and differential regulation by fibroblast growth factor and bone morphogenic protein. J Periodont Res. 2009;44:238-47 https://doi.org/10.1111/j.1600-0765.2008.01140.x
  24. Somerman MJ, Archer SY, Imm GR, Foster RA. A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J Dent Res. 1988;67:66-70 https://doi.org/10.1177/00220345880670011301
  25. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy Jr JD. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483-94 https://doi.org/10.1056/NEJMoa030847
  26. Verna C, Dlastra M, Lee TC, Cattaneo PM, Melsen B. Microcracks in the alveolar bone following orthodontic tooth movement: a morphological and morphometric study. Eur J Orthod. 2004;26:459-67 https://doi.org/10.1093/ejo/26.5.459
  27. Wescott DC, Pinkerton MN, Gaffery BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res. 2007;86:1212-6 https://doi.org/10.1177/154405910708601214
  28. Wodarz A, Nusse R. Mechanisms of Wnt signaling in developments. Annu Rev Cell Dev Biol. 1998;14:59-88 https://doi.org/10.1146/annurev.cellbio.14.1.59
  29. Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. Effect of different magnitudes of tension force on prostaglandin $E_{2}$ production by human periodontal ligament cells. Arch Oral Biol. 1994;39:877-84 https://doi.org/10.1016/0003-9969(94)90019-1
  30. Yamaguchi M, Shimizu N, Shibata Y, Abiko Y. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. J Dent Res. 1996;75:889-94 https://doi.org/10.1177/00220345960750030501