Browse > Article

Hair-growth Promoting Effect of Grateloupia elliptica Via the Activation of Wnt Pathway  

Kang, Jung-Il (Department of Pharmacology, School of Medicine, Jeju National University)
Kim, Sang-Cheol (Department of Pharmacology, School of Medicine, Jeju National University)
Jeon, You-Jin (Faculty of marine Biomedical Sciences, College of Ocean Sciences, Jeju National University)
Koh, Young-Sang (Department of Microbiology, School of Medicine, Jeju National University)
Yoo, Eun-Sook (Department of Pharmacology, School of Medicine, Jeju National University)
Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Jeju National University)
Publication Information
Korean Journal of Pharmacognosy / v.47, no.2, 2016 , pp. 143-149 More about this Journal
Abstract
Grateloupia elliptica has been reported to have the proliferation effect of dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. In the present study, we examined in vitro and in vivo hair growth-promoting effect of Grateloupia elliptica. When isolated rat vibrissa follicles were treated with extract of G. elliptica, the hair-fiber lengths of the vibrissa follicles significantly increased. Furthermore, the G. elliptica extract accelerated the telogen-angen transition in C57BL/6 mice. To investigate the molecular mechanisms of the G. elliptica extract on the proliferation of DPCs, we examined the activation of $wnt/{\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. The G. elliptica extract activated $wnt/{\beta}$-catenin signaling via the increase of ${\beta}$-catenin and phospho-$GSK3{\beta}$. In addition, the G. elliptica extract increased the level of cyclin E and CDK2, while the level of $p27^{kip1}$ was decreased. These results suggest that the the G. elliptica extract may induce hair growth by proliferation of DPCs via cell-cycle progression and the activation of $Wnt/{\beta}$-catenin signaling.
Keywords
Hair growth; Grateloupia elliptica; C57BL/6 mice; Rat vibrissa follicles; Dermal papilla cells; $Wnt/{\beta}$-catenin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Price, V. H. (1999) Treatment of hair loss. N. Engl. J. Med. 341: 964-973.   DOI
2 Ellis, J. A., Sinclair, R. and Harrap, S. B. (2002) Androgenetic alopecia: pathogenesis and potential for therapy. Expert. Rev. Mol. Med. 4: 1-11.
3 Cotsarelis, G. and Millar, S. E. (2001) Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 7: 293-301.   DOI
4 Kaufman, K. D. and Dawber, R. P. (1999) Finasteride, a Type 2 5alpha-reductase inhibitor, in the treatment of men with androgenetic alopecia. Expert. Opin. Investig. Drugs 8: 403-415.   DOI
5 Kaufman, K. D. (2002) Androgens and alopecia. Mol. Cell Endocrinol. 198: 89-95.   DOI
6 Kwack, M. H., Kang, B. M., Kim, M. K., Kim, J. C. and Sung, Y. K. (2011) Minoxidil activates beta-catenin pathway in human dermal papilla cells: A possible explanation for its anagen prolongation effect. J. Dermatol. Sci. 62: 154-159.   DOI
7 Hamaoka, H., Minakuchi, K., Miyoshi, H., Arase, S., Chen, C. H. and Nakaya, Y. (1997) Effect of $K^+$ channel openers on $K^+$ channel in cultured human dermal papilla cells. J. Med. Invest. 44: 73-77.
8 Shorter, K., Farjo, N. P., Picksley, S. M. and Randall, V. A. (2008) Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 22: 1725-1736.   DOI
9 Han, J. H., Kwon, O. S., Chung, J. H., Cho, K. H., Eun, H. C. and Kim, K. H. (2004) Effect of minoxodil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34: 91-98.   DOI
10 Ouji, Y., Yoshikawa, M., Moriya, K. and Ishizaka, S. (2007) Effects of Wnt-10b on hair shaft growth in hair follicle cultures. Biochem. Biophys. Res. Commun. 359: 516-522.   DOI
11 Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S. E. and Cotsarelis, G. (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447: 316-320.   DOI
12 Monick, M. M., Carter, A. B., Robeff, P. K., Flaherty, D. M., Peterson, M. W., and Hunninghake, G. W. (2001) Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J. Immunol. 166: 4713-4720.   DOI
13 Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H. A., Stokes, N., Dela Cruz-Racelis, J. and Fuchs, E. (2009) A twostep mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4: 155-169.   DOI
14 Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M, and Klein, P. S. (1997) Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185: 82-91.   DOI
15 Hino, S., Tanji, C., Nakayama, K. I., and Kikuchi, A. (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol. Cell. Biol. 25: 9063-9072.   DOI
16 Stenn, K. S. and Paus, R. (2001) Controls of hair follicle cycling. Physiol. Rev. 81: 449-494.   DOI
17 Johnson, D. G. and Walker, C. L. (1999) Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39: 295-312.   DOI
18 Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422-426.   DOI
19 Kim, K. Y., Nam, K. A., Kurihara, H. and Kim, S. M. (2008). Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820-2825.   DOI
20 Yang, E. J., Moon, J. Y., Kim, M. J., Kim, D. S., Kim, C. S., Lee, W. J., Lee, N. H. and Hyun, C. G. (2010). Inhibitory effect of Jeju endemic seaweeds on the production of proinflammatory mediators in mouse macrophage cell line RAW 7. J. Zhejiang Univ. Sci. B. 11: 315-322.
21 Ohnemus, U., Uenalan, M., Conrad, F., Handjiski, B., Mecklenburg, L., Nakamura, M., Inzunza, J., Gustafsson, J.A. and Paus, R. (2005) Hair cycle control by estrogens: Catagen induction via estrogen receptor (ER)-alpha is checked by ER beta signaling. Endocrinology 146: 1214-1225.   DOI
22 Kang, J. I., Kim, S. C., Han, S. C., Hong, H. J., Jeon, Y. J., Kim, B., Koh, Y. S., Yoo, E. S. and Kang, H. K. (2012) Hairloss preventing effect of Grateloupia elliptica. Biomol. Ther. 20: 118-124.   DOI
23 Cho, M., Park, G. M., Kim, S. N., Amna, T., Lee, S. and Shin, W. S. (2014) Glioblastoma-specific anticancer activity of pheophorbide a from the edible red seaweed Grateloupia elliptica. J. Microbiol. Biotechnol. 24: 346-353.   DOI
24 Matsuda, H., Yamazaki, M., Asanuma, Y., and Kubo, M. (2003) Promotion of hair growth by ginseng radix on cultured mouse vibrissa hair follicles. Phytother. Res. 17: 797-800.   DOI
25 Filsell, W., Little, J. C., Stones, A. J., Granger, S. P. and Bayley, S. A. (1994) Transfection of rat dermal papilla cells with a gene encoding a temperature-sensitive polyomavirus large T antigen generates cell lines a differentiated phenotype. J. Cell Sci. 107: 1761-1772.
26 Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
27 Philpott, M.P., Green, M.R. and Kealy, T. (1992) Rat hair follicle growth in vitro. Br. J. Dermatol. 127: 600-607.   DOI
28 Philpott, M.P. and Kealey, T. (2000) Cyclical changes in rat vibrissa follicles maintained in vitro. J. Invest. Dermatol. 115: 1152-1155.   DOI
29 Jahoda, C. A., Horne, K. A. and Oliver, R. F. (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311: 560-562.   DOI
30 Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmüller, S., Foitzik, K., McKay, I. A., Stenn, K. S. and Paus, R. (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117: 3-15.   DOI
31 Horne, K. A., Jahoda, C. A. and Oliver, R. F. (1986) Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. J. Embryol. Exp. Morphol. 97: 111-124.
32 Sherr, C. J. (1996) Cancer cell cycles. Science 274: 1672-1677.   DOI
33 Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501-1512.   DOI
34 Prall, O. W., Sarcevic, B., Musgrove, E. A., Watts, C. K. and Sutherland, R. L. (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J. Biol. Chem. 272: 10882-10894.   DOI
35 Kang, J. I., Kim, E. J., Kim, M. K., Jeon, Y. J., Kang, S. M., Koh, Y. S., Yoo, E. S. and Kang, H.K. (2013) The promoting effect of Ishige sinicola on hair growth. Mar. Drugs 11: 1783-1799.   DOI
36 Wangefjord, S., Brändstedt, J., Ericson Lindquist, K., Nodin, B., Jirström, K. and Eberhard, J. (2013) Associations of betacatenin alterations and MSI screening status with expression of key cell cycle regulating proteins and survival from colorectal cancer. Diagn. Pathol. 8: 10.
37 Kang, J. I., Kim, S. C., Kim, M. K., Boo, H. J., Kim, E. J., Im, G. J., Kim, Y. H., Hyun, J. W., Kang, J, H., Koh, Y. S., Park, D. B., Yoo, E. S. and Kang, H. K. (2015) Effects of dihydrotestosterone on rat dermal papilla cells in vitro. Eur. J. Pharmacol. 757: 74-83.   DOI
38 Brudvik, K. W., Paulsen, J. E., Aandahl, E. M., Roald, B. and Tasken, K. (2011) Protein kinase A antagonist inhibits ${\beta}$-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in Apc(Min/+) mice. Mol. Cancer 10: 149.   DOI
39 Jo, S. J., Choi, S. J., Yoon, S. Y., Lee, J. Y., Park, W. S., Park, P. J., Kim, K. H., Eun, H. C. and Kwon, O. (2013) Valproic acid promotes human hair growth in in vitro culture model. J. Dermatol. Sci. 72: 16-24.   DOI
40 Kim, S. C., Kang, J. I., Park, D. B., Lee, Y. K., Hyun, J. W., Koh, Y. S., Yoo, E. S., Kim, J. A., Kim, Y. H. and Kang, H. K. (2012) Promotion effect of acankoreoside J, a lupane-triterpene in Acanthopanax koreanum, on hair growth. Arch. Pharm. Res. 35: 1495-1503.   DOI
41 Wang, S. C., Bligh, S. W., Shi, S. S., Wang, Z. T., Hu, Z. B., Crowder, J., Branford-White. C. and Vella, C. (2007) Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int. J. Biol. Macromol. 41: 369-375.   DOI
42 Yu, Q., Yan, J., Wang, S., Ji, L., Ding, K., Vella, C., Wang, Z. and Hu, Z. (2012) Antiangiogenic effects of GFP08, an agaran- type polysaccharide isolated from Grateloupia filicina. Glycobiology 22: 1343-1352.   DOI
43 Ye, D., Jiang, Z., Zheng, F., Wang, H., Zhang, Y., Gao, F., Chen, P., Chen, Y. and Shi, G. (2015) Optimized extraction of polysaccharides from Grateloupia livida (Harv.) Yamada and biological activities. Molecules 20: 16817-16832.   DOI
44 Chen, J., Qi, H., Li, J. B., Yi, Y. Q., Chen, D., Hu, X. H., Wang, M. L., Sun, X. L. and Wei, X. Y. (2014) Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth. Zhongguo Zhong Yao Za Zhi 39: 291-295.