• Title/Summary/Keyword: $l^{p,\infty}$

Search Result 145, Processing Time 0.023 seconds

HARMONIC BERGMAN SPACES OF THE HALF-SPACE AND THEIR SOME OPERATORS

  • Kang, Si-Ho;Kim, Ja-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.773-786
    • /
    • 2001
  • On the setting of the half-space of the Euclidean n-space, we consider harmonic Bergman spaces and we also study properties of the reproducing kernel. Using covering lemma, we find some equivalent quantities. We prove that if lim$ lim\limits_{i\rightarrow\infty}\frac{\mu(K_r(zi))}{V(K_r(Z_i))}$ then the inclusion function $I : b^p\rightarrow L^p(H_n, d\mu)$ is a compact operator. Moreover, we show that if f is a nonnegative continuous function in $L^\infty and lim\limits_{Z\rightarrow\infty}f(z) = 0, then T_f$ is compact if and only if f $\in$ $C_{o}$ (H$_{n}$ ).

  • PDF

COMPACT OPERATOR RELATED WITH POISSON-SZEGö INTEGRAL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.333-342
    • /
    • 2007
  • Suppose that ${\mu}$ is a finite positive Borel measure on the unit ball $B{\subset}C^n$. The boundary of B is the unit sphere $S=\{z:{\mid}z{\mid}=1\}$. Let ${\sigma}$ be the rotation-invariant measure on S such that ${\sigma}(S)=1$. In this paper, we will show that if $sup_{{\zeta}{\in}S}\;{\int}_{B}\;P(z,{\zeta})d{\mu}(z)$<${\infty}$ where $P(z,{\zeta})$ is the Poission-Szeg$\ddot{o}$ kernel for B, then ${\mu}$ is a Carleson measure. We will also show that if $sup_{{\zeta}{\in}S}\;{\int}_{B}\;P(z,{\zeta})d{\mu}(z)$<${\infty}$, then the operator T such that T(f) = P[f] is compact as a mapping from $L^p(\sigma)$ into $L^p(B,d{\mu})$.

  • PDF

ON THE IDEAL CLASS GROUPS OF ℤp-EXTENSIONS OVER REAL ABELIAN FIELDS

  • Kim, Jae Moon;Ryu, Ja Do
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.227-233
    • /
    • 1999
  • Let $k$ be a real abelian field and $k_{\infty}={\bigcup}_{n{\geq}0}k_n$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. For each $n{\geq}0$, we denote the class number of $k_n$ by $h_n$. The following is a well known theorem: Theorem. Suppose $p$ remains inert in $k$ and the prime ideal of $k$ above $p$ totally ramifies in $k_{\infty}$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$. The aim of this paper is to generalize above theorem: Theorem 1. Suppose $H^1(G_n,E_n){\simeq}(\mathbb{Z}/p^n\mathbb{Z})^l$, where $l$ is the number of prime ideals of $k$ above $p$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$. Theorem 2. Let $k$ be a real quadratic field. Suppose that $H^1(G_1,E_1){\simeq}(\mathbb{Z}/p\mathbb{Z})^l$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$.

  • PDF

POSITIVE INTERPOLATION ON Ax = y AND AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.259-265
    • /
    • 2009
  • Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. Let x and y be vectors in $\mathcal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE$ = $EP_x$ for each E ${\in}\;\mathcal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\mathcal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and A ${\geq}$ 0. (2) sup ${\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}:E{\in}\mathcal{L}}$ < ${\infty}$ < x, y > ${\geq}$ 0. Let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto $\overline{rangeX}$. If PE = EP for each E ${\in}\;\mathcal{L}$, then the following are equivalent: (1) sup ${\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}:f{\in}\mathcal{H},E{\in}\mathcal{L}}$ < ${\infty}$ and < Xf, Yf > ${\geq}$ 0 for all f in H. (2) There exists a positive operator A in Alg$\mathcal{L}$ such that AX = Y.

A Note on Central Limit Theorem on $L^P(R)$

  • Sungho Lee;Dug Hun Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.347-349
    • /
    • 1995
  • In this paper a central limit theorem on $L^P(R)$ for $1{\leq}p<{\infty}$ is obtained with an example when ${X_n}$ is a sequence of independent, identically distributed random variables on $L^P(R)$.

  • PDF

ON THE COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES GENERATED BY ρ*-MIXING SEQUENCES

  • Ko, Mi-Hwa;Kim, Tae-Sung;Ryu, Dae-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.597-606
    • /
    • 2008
  • Let {$Y_{ij}-{\infty}\;<\;i\;<\;{\infty}$} be a doubly infinite sequence of identically distributed and ${\rho}^*$-mixing random variables with zero means and finite variances and {$a_{ij}-{\infty}\;<\;i\;<\;{\infty}$} an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of {${\sum}^n_{k=1}\;{\sum}^{\infty}_{i=-{\infty}}\;a_{i+k}Y_i/n^{1/p}$; $n\;{\geq}\;1$} under some suitable conditions. We extend Theorem 1.1 of Li and Zhang [Y. X. Li and L. X. Zhang, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), 191.197.] to the ${\rho}^*$-mixing case.

COMPLEMENTED SUBLATTICE OF THE BANACH ENVELOPE OF WeakL1 ISOMORPHIC TO ℓp

  • Kang, Jeong-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.209-218
    • /
    • 2007
  • In this paper we investigate the ${\ell}^p$ space structure of the Banach envelope of $WeakL_1$. In particular, the Banach envelope of $WeakL_1$ contains a complemented Banach sublattice that is isometrically isomorphic to the nonseparable Banach lattice ${\ell}^p$, ($1{\leq}p<\infty$) as well as the separable case.

EQUATIONS AX = Y AND Ax = y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho;Park, Dong-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.399-411
    • /
    • 2006
  • Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. Let P be the projection onto $\frac\;{R(X)}$, where RX is the range of X. If PE = EP for each $E\;\in\;L$, then there exists an operator A in AlgL such that AX = Y if and only if $$sup\{{\parallel}E^{\bot}Yf{\parallel}/{\parallel}E^{\bot}Xf{\parallel}\;:\;f{\in}H,\; E{\in}L}=K\;<\;\infty$$ Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel} = K.$ Let x and y be vectors in H and let $P_x$ be the projection onto the singlely generated space by x. If $P_xE = EP_x$ for each $E\inL$, then the assertion that there exists an operator A in AlgL such that Ax = y is equivalent to the condition $$K_0\;:\;=\;sup\{{\parallel}E^{\bot}y{\parallel}/{\parallel}E^{\bot}x\;:\;E{\in}L}=<\;\infty$$ Moreover, we may choose an operator A such that ${\parallel}A{\parallel} = K_0$ whose norm is $K_0$ under this case.

ON A LIMIT CLASS OF LORENTZ OPERATOR IDEALS

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.93-109
    • /
    • 2003
  • We give an extensive presentation of results about the behaviour of the approximation operator ideals $\mathcal{L}_{{\infty},q}$ in connection with the Lorentz operator ideals $\mathcal{L}_{p,q}$.

  • PDF

ON THE ASYMPTOTIC CONVERGENCE OF ORTHONORMAL CARDINAL REFINABLE FUNCTIONS

  • Kim, Rae-Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.133-137
    • /
    • 2008
  • We prove an extended version of asymptotic behavior of the orthonormal cardinal refinable functions from Blaschke products introduced by Contronei et al [2]. In fact, we show the orthonormal cardinal refinable function ${\varphi}_{k,q}$ converges in $L^p(\mathbb{R})$ ($2{\leq}p{\leq}{\infty}$) to the Shannon refinable function as ${\kappa}{\rightarrow}{\infty}$ uniforml on a class $\mathcal{Q}_{A,B}$ of real symmetric polynomials determined by positive constants $A{\leq}B$.

  • PDF