HARMONIC BERGMAN SPACES OF THE HALF-SPACE AND THEIR SOME OPERATORS

SI HO KANG AND JA YOUNG KIM

ABSTRACT. On the setting of the half-space of the Euclidean n-space, we consider harmonic Bergman spaces and we also study properties of the reproducing kernel. Using covering lemma, we find some equivalent quantities. We prove that if $\lim_{i\to\infty}\frac{\mu\big(K_r(z_i)\big)}{V\big(K_r(z_i)\big)}=0$ then the inclusion function $I:b^p\to L^p(H_n,d\mu)$ is a compact operator. Moreover, we show that if f is a nonnegative continuous function in L^∞ and $\lim_{z\to\infty}f(z)=0$, then T_f is compact if and only if $f\in C_0(H_n)$.

1. Introduction

Let H_n be the open subset of the Euclidean space \mathbf{R}^n given by

$$H_n = \{(x, y) : y > 0\},\$$

where we have written a typical point $z \in \mathbf{R}^n$ as z = (x, y), with $x \in \mathbf{R}^{n-1}$ and $y \in \mathbf{R}^+$, dV will be the usual n-dimensional volume measure on H_n and B(z,r) the Euclidean ball with center z and radius r. For $1 \le p < \infty$, let

$$b^p=\{f\in h(H_n): \int_{H_n}|f|^pdV<\infty\},$$

where $h(H_n)$ is the set of all harmonic functions on H_n . Then the harmonic Bergman space b^p is a closed subspace of $L^p(H_n, dV)$ ([2], [3], [5]).

Received July 14, 2001.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B35, 47B38; Secondary 32A36

Key words and phrases: Bergman spaces, reproducing kernels, Toeplitz operators, idempotent operators.

This research was supported by Sookmyung Women's University Research Grants 2001.

If p=2 then $L^2(H_n,dV)$ is a Hilbert space and hence there is an orthogonal projection Q from $L^2(H_n,dV)$ onto b^2 . For each $z\in H_n$, we define $\Lambda_z:b^2\longrightarrow \mathbb{C}$ by $\Lambda_z(f)=f(z)$ for all $f\in b^2$. Then $\Lambda_z\in (b^2)^*$. Thus there exists a unique function $R(z,\cdot)\in b^2$ such that $f(z)=\int_{H_n}f(w)R(z,w)dV(w)$ for all $f\in b^2$ and $Q(f(z))=\int_{H_n}f(w)R(z,w)dV(w)$. By Theorem 8.22 in [2], for $z=(z_1,\cdots,z_n)$ and $w=(w_1,\cdots,w_n)\in H_n$,

$$R(z, w) = \frac{4}{nV(B)} \frac{n(z_n + w_n)^2 - |z - \overline{w}|^2}{|z - \overline{w}|^{n+2}}$$

which is called the reproducing kernel for b^2 , where $\overline{w} = (w_1, \dots, w_{n-1}, -w_n)$. The purpose of this paper is to study these reproducing kernels and compactness characterization for Toeplitz operators with nonnegative continuous symbols on the harmonic Bergman space of the half-plane. In Section 2, we point out how harmonic reproducing kernels behave differently from one's on the unit disk. In Section 3, we establish some properties for $R(z,\cdot)$ and the inclusion operator $I: b^p \longrightarrow L^p(H_n, d\mu)$, where μ is a positive Borel measure on H_n . In the last section, we give a characterization of the compactness of Toeplitz operators with nonnegative bounded symbols.

Throughout this paper, the letters C and C_1 denote some constants and we use the symbol \approx to indicate that the quotient of two quantities is bounded above and below by constants when the variables vary.

2. The reproducing kernel

LEMMA 2.1. For any $z, w \in H_n$, there is a constant C such that

$$|R(z,w)| \le \frac{C}{|z-\overline{w}|^n}.$$

Proof. For any
$$z = (z_1, \dots, z_n)$$
 and $w = (w_1, \dots, w_n)$ in H_n ,
$$|R(z, w)| = \left| \frac{4}{nV(B)} \frac{n(z_n + w_n)^2 - |z - \overline{w}|^2}{|z - \overline{w}|^{n+2}} \right|$$

$$\leq \frac{4}{nV(B)} \frac{n|z - \overline{w}|^2 + |z - \overline{w}|^2}{|z - \overline{w}|^{n+2}}$$

$$= \frac{4}{nV(B)} \frac{n+1}{|z - \overline{w}|^n}.$$

This completes the proof.

Proposition 2.2. For $1 < q \le \infty$ and $z \in H_n$, $R(z, \cdot) \in b^q$.

Proof. For $x, s \in \mathbf{R}^{n-1}$ and $y \in \mathbf{R}^+$,

$$P_{H_n}((x,y),s) = \frac{2}{nV(B)} \frac{y}{|(x,y)-s|^n}$$

is the Poisson kernel for H_n and hence

$$\int_{\mathbf{R}^{n-1}} \frac{2}{nV(B)} \frac{y}{\left(|x-s|^2+y^2\right)^{n/2}} ds = 1.$$

If w = (s, t) and z = (x, y) where $s, x \in \mathbf{R}^{n-1}$ and $t, y \in \mathbf{R}^+$ then

$$\int_{H_{n}} |R(z, w)|^{q} dV(w)
\leq C^{q} \int_{H_{n}} \frac{1}{|z - \overline{w}|^{nq}} dV(w) \text{ by Lemma 2.1}
= C^{q} \int_{0}^{\infty} \int_{\mathbf{R}^{n-1}} \frac{1}{\left(|x - s|^{2} + (y + t)^{2}\right)^{nq/2}} ds dt
\leq C^{q} \int_{0}^{\infty} \int_{\mathbf{R}^{n-1}} \frac{1}{(y + t)^{n(q-1)+1}} \frac{(y + t)}{\left(|x - s|^{2} + (y + t)^{2}\right)^{n/2}} ds dt
= \mathbb{C}_{1} \int_{0}^{\infty} \frac{1}{(y + t)^{n(q-1)+1}} dt
= C_{1} \int_{0}^{\infty} \frac{1}{t^{n(q-1)+1}} dt < \infty.$$

Since $R(z,\cdot)$ is harmonic, $R(z,\cdot)$ is in b^q .

LEMMA 2.3. For 1 , there exists C such that

$$\int_{H_n} \frac{w_n^{-1/p}}{|z - \overline{w}|^n} dV(w) = C z_n^{-1/p}$$

for all $z \in H_n$.

Proof. Fix $z = (x, y) \in H_n$. Letting w = (s, t) where $s \in \mathbf{R}^{n-1}$ and $t \in \mathbf{R}^+$, we have

$$\int_{H_n} \frac{t^{-1/p}}{|z - \overline{w}|^n} dV(w) = \int_0^\infty \int_{\mathbf{R}^{n-1}} \frac{t^{-1/p}}{|(x, y) - (s, -t)|^n} ds dt$$

$$= \int_0^\infty \frac{t^{-1/p}}{y + t} \int_{\mathbf{R}^{n-1}} \frac{y + t}{|(x, y) - (s, -t)|^n} ds dt$$

$$= \int_0^\infty \frac{t^{-1/p}}{y + t} \frac{nV(B)}{2} dt$$

$$= \frac{nV(B)}{2} \int_0^\infty \frac{t^{-1/p}}{y + t} dt$$

$$= y^{-1/p} \frac{nV(B)}{2} \int_0^\infty \frac{t^{-1/p}}{1 + t} dt.$$

Since
$$\int_0^\infty \frac{t^{-1/p}}{1+t} dt < \infty$$
, $\frac{nV(B)}{2} \int_0^\infty \frac{t^{-1/p}}{1+t} dt$ is constants and hence
$$\int_{H_n} \frac{t^{-1/p}}{|z-\overline{w}|^n} dV(w) = Cy^{-1/p} \text{ for some constants } C.$$

Suppose that $p \in (1, \infty)$ and $f \in L^p(H_n, dV)$. We note that $R(z, \cdot)$ is harmonic. By the Lebesgue dominated convergence theorem,

$$Q(f)(z) = \int_{H_n} f(w)R(z, w)dV(w)$$

is harmonic. Suppose $\frac{1}{p} + \frac{1}{q} = 1$. By Lemma 2.1,

$$\begin{aligned} |Q(f(z))| &= \Big| \int_{H_n} f(w) R(z, w) dV(w) \Big| \\ &\leq C \int_{H_n} |f(w)| \frac{1}{|z - \overline{w}|^n} dV(w) \\ &= C \int_{H_n} |f(w)| \frac{w_n^{1/pq} w_n^{-1/pq}}{|z - \overline{w}|^{n/p} |z - \overline{w}|^{n/q}} dV(w). \end{aligned}$$

By the Hölder's inequality and Lemma 2.3,

$$\int_{H_{n}} \left| Q(f(z)) \right|^{p} dV(z)
\leq \int_{H_{n}} C^{p} \left| \int_{H_{n}} |f(w)| \frac{1}{|z - \overline{w}|^{n/p} |z - \overline{w}|^{n/q}} dV(w) \right|^{p} dV(z)
\leq C^{p} \int_{H_{n}} \int_{H_{n}} |f(w)|^{p} \frac{w_{n}^{1/q}}{|z - \overline{w}|^{n}} dV(w) \left(\int_{H_{n}} \frac{w_{n}^{-1/p}}{|z - \overline{w}|^{n}} dV(w) \right)^{p/q} dV(z)
= C^{p} C_{1}^{p/q} \|f\|_{p}^{p}.$$

Thus $Q: L^p(H_n, dV) \longrightarrow b^p$ is a bounded linear operator.

We want to find some equivalent quantities of the reproducing kernel. To do so, for any $r \in (0,1)$ and any $z \in H_n$, we define $K_r(z) = \{w \in H_n : |w-z| < rz_n\}$. Then we have the following lemma([4]).

LEMMA 2.4. For $r \in (0, \frac{1}{3})$, there exists a sequence $\{z_i\}$ in H_n such that $(1) \cup K_r(z_i) = H_n$ and (2) there is $M \in \mathbb{N}$ such that for each $z \in H_n$, $|\{i: z \in K_{3r}(z_i)\}| \leq M$.

Proof. Let $w_m = (s_m, t_m)$ and $B_m = B(w_m, \frac{1}{5}t_m)$ where $s_m \in \mathbf{Q}^{n-1}$ and $t_m \in \mathbf{Q}^+$. Then $\cup B_m = H_n$. Put $D_1 = B_1$. For $n \geq 2$, we define $D_n = B_k$, where k is the first element of the $\{i: B_i \cap (\cup_{j=1}^{n-1} D_j) = \varnothing\}$ and let $z_m = (x_m, y_m)$ denote the center of D_m where $x_m \in \mathbf{R}^{n-1}$ and $y_m \in \mathbf{R}^+$. Take any $z \in H_n$. Then $z \in B_m$ for some m. If $B_m \cap D_l = \varnothing$ for $l \leq m-1$ then $D_m = B_m$ and hence $z \in K_r(z_m)$. If $B_m \cap D_l \neq \varnothing$ for some $l \leq m-1$ then $t_m - y_l \leq |t_m - y_l| \leq |w_m - z_l| < \frac{r}{5}t_m + \frac{r}{5}y_l$, i.e., $t_m < \frac{5+r}{5-r}y_l$. Thus $|z-z_l| \leq |z-w_m| + |w_m-z_l| < \frac{r}{5}t_m + \frac{r}{5}t_m + \frac{r}{5}y_l < \frac{2r}{5}\frac{5+r}{5-r}y_l + \frac{r}{5}y_l = \frac{r(10+2r+5-r)}{5(5-r)}y_l < ry_l$. This implies $z \in K_r(z_l)$.

Take any z=(x,y) in H_n . Let $N_z=\{m:|z-z_m|<3ry_m\}$. For $m\in N_z$ and $w\in K_{\frac{r}{5}}(z_m), |z-w|\leq |z-z_m|+|z_m-w|<3ry_m+\frac{r}{5}y_m$ $=\frac{16r}{5}y_m<\frac{16r}{5(1-3r)}y$ and hence $K_{\frac{r}{5}}(z_m)\leq K_{\frac{16r}{5(1-3r)}}(z)$. Since $\{K_{\frac{r}{5}}(z_m)\}$ is disjoint and

$$\sum_{m \in N_z} |K_{\frac{r}{5}}(z_m)| = C\pi \sum_{m \in N_z} \left(\frac{r}{5}y_m\right)^n > C\pi \left(\frac{r}{5}\frac{y}{(1+3r)}\right)^n |N_z|, \quad |N_z| < \left(\frac{16(1+3r)}{1-3r}\right)^n.$$

Thus $\{N_z : z \in H_n\}$ is uniformly bounded.

PROPOSITION 2.5. For $z \in H_n$ and $w \in K_r(z)$, $R(z, w) \approx \frac{1}{z_n^n}$.

Proof. Since $|R(z,w)| \leq \frac{C}{|z-\overline{w}|^n}$ for all $z,w \in H_n$, $|R(z,w)| \leq \frac{C}{z_n^n}$. Since $n(z_n + w_n)^2 > |z - \overline{w}|^2$,

$$|R(z,w)| = \frac{4}{nV(B)} \left| \frac{n(z_n + w_n)^2 - |z - \overline{w}|^2}{|z - \overline{w}|^{n+2}} \right| \ge \frac{C_1}{z_n^n}$$

for some C_1 and hence $R(z, w) \approx \frac{1}{z_n^n}$.

Proposition 2.6. For $1 and <math>z \in H_n$,

$$||R(z,\cdot)||_p \approx z_n^{-n(p-1)/p}$$
.

Proof. By Proposition 2.5,

$$\begin{split} \|R(z,\cdot)\|_{p}^{p} &= \int_{H_{n}} \left|R(z,w)\right|^{p} dV(w) \\ &\geq \int_{K_{r}(z)} \left|R(z,w)\right|^{p} dV(w) \\ &= \int_{K_{r}(z)} \frac{C}{z_{n}^{p}} dV(w) \\ &= CC_{1} \frac{z_{n}^{n}}{z_{n}^{n}} = CC_{1} z_{n}^{-n(p-1)}. \end{split}$$

Note that

$$\begin{split} \|R(z,\cdot)\|_p^p &= \int_{H_n} |R(z,w)|^p dV(w) \\ &\leq C_1 \int_{H_n} \frac{1}{|z-\overline{w}|^{np}} dV(w) \\ &\leq C_1 C_2 \int_0^\infty \frac{1}{(z_n+w_n)^{n(p-1)+1}} dw_n \\ &= C_1 C_2 \int_{z_n}^\infty \frac{1}{w_n^{n(p-1)-1}} dw_n \\ &= C_1 C_2 z_n^{-n(p-1)}. \end{split}$$

The proof is complete.

3. The embedding operator

Suppose that $1 \leq p < \infty$, μ is a positive Borel measure on H_n and $\{K_r(z_i)\}$ is the sequence in Lemma 2.4. Let $I: b^p \longrightarrow L^p(H_n, d\mu)$ be the inclusion function. Suppose that $\frac{\mu(K_r(z_i))}{V(K_r(z_i))} < N$ for all $i = 1, 2, \cdots$ and M is the multiplicity in Lemma 2.4. Then we can show that I is a function. To do so, we need the following:

LEMMA 3.1. For 0 < r < t < 1 and $1 \le p < \infty$, there exists a finite constant C such that $|f(w)|^p \le \frac{C}{V(K_t(z))} \int_{K_t(z)} |f|^p dV$ for all $z \in H_n$, $w \in K_r(z)$ and all harmonic functions f on H_n .

Proof. Let $z \in H_n$ and let $w \in K_r(z)$. Since r < t, for any harmonic function f on H_n ,

$$|f(w)|^p = \left| \frac{1}{V(B(w, (t-r)z_n))} \int_{B(w, (t-r)z_n)} f dV \right|$$

$$\leq \frac{C_1^p}{V(K_t(z))} \int_{K_t(z)} |f|^p dV \quad \text{for some constant } C_1.$$

This implies the result.

Take any u in b^p . Then

$$\int_{H_{n}} |u(z)|^{p} d\mu(z) \leq \sum_{i=1}^{\infty} \int_{K_{r}(z_{i})} |u(z)|^{p} d\mu(z)
\leq \sum_{i=1}^{\infty} \mu(K_{r}(z_{i})) \times \sup_{z \in K_{r}(z_{i})} |u(z)|^{p}
= C \sum_{i=1}^{\infty} \frac{\mu(K_{r}(z_{i}))}{V(K_{r}(z_{i}))} \int_{K_{r}(z_{i})} |u(z)|^{p} dV
\leq CN \sum_{i=1}^{\infty} \int_{K_{3r}(z_{i})} |u(z)|^{p} dV(z)
\leq CNM \int_{H_{n}} |u(z)|^{p} dV(z).$$

Since $u \in b^p$, $I: b^p \longrightarrow L^p(H_n, d\mu)$ is a function. In fact, we can show that I is compact whenever $\lim_{n \to \infty} \frac{\mu(K_r(z_i))}{V(K_r(z_i))} = 0$.

LEMMA 3.2. For $1 , <math>b^p \cap L^{\infty}$ is dense in b^p .

Proof. Take any $\varepsilon > 0$ and any f in b^p . For each $\delta > 0$ and any z = (x, y), let $f_{\delta}(z) = f(x, y + \delta)$. Then $f_{\delta} \in b^p$. Since $C_C(H_n)$ is dense in L^p , there is $g \in C_C(H_n)$ such that $\|g - f\|_p < \varepsilon$. Since $\lim_{\delta \to 0} \|g_{\delta} - g\|_p = 0$, there is $\delta_0 > 0$ such that for $0 < \delta < \delta_0$, $\|g_{\delta} - g\|_p < \varepsilon$ and hence $\|f_{\delta} - f\|_p \le \|f_{\delta} - g_{\delta}\|_p + \|g_{\delta} - g\|_p + \|g - f\|_p < 3\varepsilon$. Then for any $w = (s, t) \in H_n$,

$$|f_{\delta}(w)|^{p} = |f(s,t+\delta)|^{p}$$

$$= \left|\frac{1}{V(B((s,t+\delta),\delta))} \int_{B((s,t+\delta),\delta)} f(z)dV(z)\right|^{p}$$

$$\leq \frac{1}{V(B((s,t+\delta),\delta))} \int_{H_{n}} |f(z)|^{p}dV(z).$$

This implies $f_{\delta} \in L^{\infty}$. Thus $b^p \cap L^{\infty}$ is dense in b^p .

PROPOSITION 3.3. For $1 and <math>z \in H_n$, $\frac{R(z, \cdot)}{\|R(z, \cdot)\|_p}$ converges weakly to 0 in b^p as $z_n \to 0$.

 $\begin{array}{ll} \textit{Proof.} \ \ \text{Let} \ \frac{1}{p} + \frac{1}{q} = 1. \ \ \text{Take any} \ v \ \text{in} \ b^q \cap L^{\infty}. \ \ \text{Since} \ \|R(z,\cdot)\|_p \approx \\ z_n^{-n(p-1)/p}, \ \left|\left\langle \frac{R(z,\cdot)}{\|R(z,\cdot)\|_p}, v\right\rangle\right| = \frac{1}{\|R(z,\cdot)\|_p} |v(z)| \approx z_n^{n/q} |v(z)| \ \ \text{and hence} \\ \frac{R(z,\cdot)}{\|R(z,\cdot)\|_p} \ \ \text{converges weakly to} \ 0 \ \ \text{as} \ z_n \to 0. \end{array}$

LEMMA 3.4. Let $1 and let <math>\{f_m\}$ be a sequence in b^p . Then $\{f_m\}$ converges weakly to f in b^p if and only if $\{\|f_m\|_p : m \in \mathbb{N}\}$ is bounded and $\{f_m\}$ converges uniformly to f on each compact subset of H_n .

Proof. Suppose $\{f_m\}$ is a sequence in b^p such that $\{f_m\}$ converges weakly to f in b^p . For each $g \in b^p$, we define $\Lambda_g : (b^p)^* \longrightarrow \mathbf{C}$ by $\Lambda_g(v) = v(g)$ for all $v \in (b^p)^*$. Then $\|\Lambda_g\| = \|g\|_p$. We note that $\{f_m\}$ converges weakly to f if and only if $\lim_{m \to \infty} v(f_m) = v(f)$ for all $v \in (b^p)^*$ if and only if $\{\Lambda_{f_m}\}$ converges pointwise to f in $(b^p)^*$ and $(b^p)^*$ is a Banach space. By the uniform boundedness principle, $\sup\{\|\Lambda_{f_m}\| : m \in \mathbf{N}\} = \sup\{\|f_m\|_p : m \in \mathbf{N}\}$ is bounded. For any

 $g \in b^p$, $z \in H_n$ and any compact subset K of H_n ,

$$|g(z)|^{p} = \left| \frac{1}{V(B(z, z_{n}))} \int_{B(z, z_{n})} g(w) dV(w) \right|^{p}$$

$$\leq \frac{1}{V(B(z, z_{n}))} \int_{B(z, z_{n})} |g(w)|^{p} dV(w)$$

$$\leq \frac{1}{V(B(z, z_{n}))} ||g||_{p}^{p}.$$

By the Arzela-Ascoli theorem, for any compact subset K, there is a subsequence $\{f_{m_k}\}$ of $\{f_m\}$ such that $\{f_{m_k}\}$ converges uniformly to f on K. Since $\{f_m\}$ converges pointwise to f and $\{f_{m_k}\}$ converges uniformly to f on each compact subset on H_n .

Conversely, take any v in $\left(C_C(H_n)\right)^*$. By the Riesz representation theorem, there exists a unique regular, complex-valued Borel measure μ such that $v(g) = \int_{H_n} g d\mu$ for all $g \in C_C(H_n)$. Note that $\{f_m\}$ converges pointwise to f. By the Lebesgue dominated convergence theorem, $\lim_{n \to \infty} v(f_m) = \lim_{m \to \infty} \int_{H_n} f_m d\mu = \int_{H_n} f d\mu = v(f)$ and hence $\{f_m\}$ converges weakly to f.

Theorem 3.5. If $\lim_{i\to\infty} \frac{\mu(K_r(z_i))}{V(K_r(z_i))} = 0$ then the embedding operator I is compact.

Proof. Suppose $\{f_m\}$ converges weakly to 0 in b^p . By Lemma 3.4, $\{f_m\}$ converges uniformly on each compact subset of H_n and $\{\|f_m\|_p: m \in \mathbf{N}\}$ is bounded. Let $\varepsilon > 0$ be given. Since $\lim_{i \to \infty} \frac{\mu(K_r(z_i))}{V(K_r(z_i))} = 0$, there is $k \in \mathbf{N}$ such that for $i \geq k$, $\frac{\mu(K_r(z_i))}{V(K_r(z_i))} < \varepsilon$. By Lemma 3.1, there is a constant C such that $|f_m(z)|^p \leq \frac{C}{V(K_{3r}(z_i))} \int_{K_{3r}(z_i)} |f_m|^p dV$

for all $z \in K_r(z_i)$. Then

$$\int_{H_{n}} |f_{m}(z)|^{p} d\mu(z)
\leq \sum_{i=1}^{\infty} \int_{K_{r}(z_{i})} |f_{m}(z_{i})|^{p} d\mu(z)
= \sum_{i=1}^{k} \int_{K_{r}(z_{i})} |f_{m}(z)|^{p} d\mu(z) + \sum_{i=k+1}^{\infty} \int_{K_{r}(z_{i})} |f_{m}(z)|^{p} d\mu(z)
\leq \sum_{i=1}^{k} \int_{K_{r}(z_{i})} |f_{m}(z)|^{p} d\mu(z) + C \sum_{i=k+1}^{\infty} \frac{\mu(K_{r}(z_{i}))}{V(K_{r}(z_{i}))} \int_{K_{3r}(z_{i})} |f_{m}(z)|^{p} dV(z)
\leq \sum_{i=1}^{k} \int_{K_{r}(z_{i})} |f_{m}(z)|^{p} d\mu(z) + C \varepsilon M \int_{H_{n}} |f_{m}(z)|^{p} dV(z),$$

where M is the constant in Lemma 2.4. Since $\{f_m\}$ converges uniformly to 0 each compact subset of H_n ,

$$\lim_{m \to \infty} \sum_{i=1}^{k} \int_{K_r(z_i)} |f_m(z)|^p d\mu(z) = \sum_{i=1}^{k} \int_{K_r(z_i)} \lim_{m \to \infty} |f_m(z)|^p d\mu(z) = 0$$

and hence $\lim_{m\to\infty} ||I(f_k)||_p^p = 0$. Thus I is compact.

4. Toeplitz operators on harmonic Bergman spaces

We note that $Q: L^2(H_n, dV) \longrightarrow b^2$ is the Bergman projection. For $f \in L^{\infty}$, we define $T_f: b^2 \longrightarrow b^2$ by $T_f(g) = Q(fg)$ for all $g \in b^2$, which is called the Toeplitz operator with symbol f ([1]). Since $||Q|| \leq 1$, $||T_f|| \leq ||f||_{\infty}$.

THEOREM 4.1. Suppose 0 < r < 1, $1 \le p < \infty$ and μ is a positive Borel measure on H_n . Then

$$\sup_{\substack{f \in b^p \\ f \neq 0}} \frac{\int_{H_n} |f|^p d\mu}{\int_{H_n} |f|^p dV} \approx \sup_{z \in H_n} \frac{\mu(K_r(z))}{V(K_r(z))}.$$

Proof. For $z \in H_n$, let $g(w) = R(z, w)^{2/p}$. Then $\int_{H_n} |g(w)|^p dV(w) = R(z, z)$. By Proposition 2.5,

$$\int_{H_n} |g(w)|^p d\mu(w) \ge \int_{K_r(z)} |R(z, w)|^2 d\mu(w) \approx \int_{K_r(z)} \frac{1}{z_n^{2n}} d\mu = \frac{1}{z_n^{2n}} \mu(K_r(z))$$

Since $|R(z, w)| = C_1 \frac{1}{z_n^n}$ for some C_1 ,

$$\frac{\int_{H_n} |g(w)|^p d\mu(w)}{\int_{H_n} |g(w)|^p dV(w)} \ge C_2 \frac{\frac{1}{z_n^{2n}} \mu(K_r(z))}{\frac{1}{z_n^{2n}}} = C \frac{\mu(K_r(z))}{V(K_r(z))} \text{ for some } C_2 \text{ and } C.$$

This implies that
$$\sup_{\substack{f \in b^p \\ f \neq 0}} \frac{\int_{H_n} |f|^p d\mu}{\int_{H_n} |f|^p dV} \geq C \sup_{z \in H_n} \frac{\mu \big(K_r(z)\big)}{V \big(K_r(z)\big)} \ .$$

Suppose $\{K_r(z_i)\}$ is the sequence and M is the constant in Lemma 2.4. Let $f \in b^p$ be such that $f \not\equiv 0$. Then

$$\int_{H_n} |f|^p d\mu \leq \sum_{i=1}^{\infty} \int_{K_r(z_i)} |f|^p d\mu
\leq \sum_{i=1}^{\infty} \sup_{w \in K_r(z_i)} |f(w)|^p \mu(K_r(z_i))
\leq C \sum_{i=1}^{\infty} \frac{\mu(K_r(z_i))}{V(K_{\frac{1+r}{2}}(z_i))} \int_{K_{\frac{1+r}{2}}(z_i)} |f|^p dV
\leq C M \sup_{z \in H_n} \frac{\mu(K_r(z))}{V(K_r(z))} ||f||_p^p.$$

Thus

$$\sup_{\substack{f \in b^p \\ f \not\equiv 0}} \frac{\int_{H_n} |f|^p d\mu}{\int_{H_n} |f|^p dV} \approx \sup_{z \in H_n} \frac{\mu(K_r(z))}{V(K_r(z))}.$$

PROPOSITION 4.2. Let K be a compact subset of H_n . If f is in L^{∞} and $f \equiv 0$ on $H_n \setminus K$ then T_f is compact.

Proof. Let $\{g_m\}$ be a norm bounded sequence in b^2 . Take any compact subset K_1 of H_n . By Hölder's inequality, for any $z \in K_1$, $|g_m(z)| \leq \int_{H_n} |g_m(w)R(z,w)| dV(w) \leq \|g_m\|_2 \|R(\cdot,w)\|_2$ and hence there is a harmonic function g on H_n and a subsequence $\{g_{m_k}\}$ of $\{g_m\}$ which converges uniformly on K_1 to g. Since T_f is continuous, $T_f(g_{m_k})$ converges to $T_f(g)$. Thus T_f is compact.

PROPOSITION 4.3. Let f be a nonnegative function in L^{∞} . If there exists $r \in (0,1)$ such that $\lim_{z_n \to 0} \frac{1}{V(K_r(z))} \int_{K_r(z)} f(w) dV(w) = 0$, then T_f is compact.

Proof. For each $k \in \mathbb{N}$, let $D_k = [-k, k] \times \cdots \times [-k, k] \times [\frac{1}{k}, k]$ and let $f_k(z) = f(z)\chi_{D_k}(z)$. Then D_k is compact. By Proposition 4.2, each T_{f_k} is compact. Then

$$\begin{split} \|T_f - T_{f_k}\|^2 &= \sup_{\|u\|_2 = 1} \|(T_f - T_{f_k})(u)\|_2^2 \\ &= \sup_{\|u\|_2 = 1} \int_{H_n} |(fu - f_k u)(w) R(z, w)|^2 dV(w) \\ &\leq \sup_{\|u\|_2 = 1} \int_{H_n \setminus D_k} |(fu - f_k u)(w) R(z, w)|^2 dV(w) \\ &\leq C \sup_{\|u\|_2 = 1} \int_{H_n \setminus D_k} f^2 |u|^2 dV \text{ for some } C \\ &= C \sup_{\|u\|_2 = 1} \int_{H_n} \chi_{H_n \setminus D_k} f^2 |u|^2 dV \\ &\leq C_1 C \sup_{z \in H} \frac{\int_{H_n} \chi_{K_r(z)} \chi_{H_n \setminus D_k} f^2 dV}{V(K_r(z))} \\ &\qquad \qquad \text{for some } C_1 \text{ by Theorem 4.1} \\ &\leq C_1 C \|f\|_{\infty} \sup_{z \in H_n} \frac{\int_{H_n} \chi_{K_r(z) \setminus D_k} f^2 |u|^2 dV}{V(K_r(z))}. \end{split}$$

By the assumption, $\lim_{k\to\infty} ||T_f - T_{f_k}|| = 0$. By Proposition 4.2, each T_{f_k} is compact and hence T_f also compact.

THEOREM 4.4. Let f be a nonnegative function in L^{∞} . Then the following are equivalent:

- (1) T_f is compact.
- (2) There exists $r \in (0,1)$ such that $\lim_{z_n \to 0} \frac{1}{V(K_r(z))} \int_{K_r(z)} f(w) dV(w) = 0$.

0.
(3) For any
$$r \in (0,1)$$
, $\lim_{z_n \to 0} \frac{1}{V(K_r(z))} \int_{K_r(z)} f(w) dV(w) = 0$.

Proof. It is clear that (3) implies (2). By Proposition 4.3, (2) implies (1). It is enough to show that (1) implies (3) to complete the proof.

Suppose T_f is a compact operator and z = (x, y). For any $r \in (0, 1)$,

$$\frac{1}{V(K_{r}(z))} \int_{K_{r}(z)} f(w)dV(w)
\approx \frac{1}{z_{n}^{n}} \int_{K_{r}(z)} f(w)dV(w)
\approx \int_{K_{r}(z)} f(w) \frac{|R(z,w)|^{2}}{|R(z,\cdot)|_{2}^{2}} dV(w) \text{ by Proposition 2.5 and Propositon 2.6}
= \int_{K_{r}(z)} \frac{f(w)}{|R(z,\cdot)|_{2}} R(z,w) \int_{H_{n}} R(w,t)R(z,t)dV(t)dV(w)
\leq \int_{H_{n}} \frac{f(w)}{|R(z,\cdot)|_{2}^{2}} R(z,w) \int_{H_{n}} R(w,t)R(z,t)dV(t)dV(w)
= \int_{H_{n}} \int_{H_{n}} \frac{f(w)}{|R(z,\cdot)|_{2}} R(z,w)R(t,w)dV(w) \frac{R(z,t)}{|R(z,\cdot)|_{2}} dV(t)
= \int_{H_{n}} Q\left(\frac{fR(z,\cdot)}{|R(z,\cdot)|_{2}}\right)(t) \frac{R(z,t)}{|R(z,\cdot)|_{2}} dV(t)
= \langle T_{f}\left(\frac{R(z,\cdot)}{|R(z,\cdot)|_{2}}\right), \frac{R(z,\cdot)}{|R(z,\cdot)|_{2}} \rangle.$$

By Proposition 3.3,
$$\lim_{z_n \to 0} \frac{1}{V(K_r(z))} \int_{K_r(z)} f(w) dV(w) = 0.$$

THEOREM 4.5. Suppose that f is a nonnegative continuous function in L^{∞} and $\lim_{z\to\infty} f(z) = 0$. Then the following are equivalent:

- (1) T_f is compact. (2) $\lim_{z \to \partial H_n} f(z) = 0$.
- (3) $f \in C_0(H_n)$.

Proof. Suppose T_f is compact and $\lim_{z\to z_0} f(z) > 0$ for some $z_0 \in \partial H_n$. Then there is r > 0 such that for $|z - z_0| < r$ and $z \in H_n$, $f(z) > \frac{A}{2}$, where $\lim_{z \to z_0} f(z) = A$. This contradicts the fact that for any $r \in (0,1)$, $\lim_{z_n \to 0} \frac{1}{V(K_r(z))} \int_{K_r(z)} f(w) dV(w) = 0$.

Conversely, take any $r \in (0,1)$ any $z = (x,y) \in H_n$. Let $z_0 = (x,0)$. Then $z_0 \in \partial H_n$ and $\lim_{z \to z_0} f(z) = 0$ and hence for any $\varepsilon > 0$ there is $\delta > 0$ such that for $|z-z_0|<\delta, |f(z)|<\varepsilon$. Put $z_1=(x,\frac{y}{2})$. Then

$$\frac{1}{V(K_r(z_1))} \int_{K_r(z_1)} f(w) dV(w) < \varepsilon.$$

This implies that T_f is compact.

It is enough to show that (2) implies (3) to complete the proof. Since $\lim_{z\to\infty} f(z) = 0$, for any $\varepsilon > 0$, there is M > 0 such that for |z| > M, $|f(z)| < \varepsilon$. Let $K = \{(x,y) : |x| \le M \text{ and } 0 \le y \le M\}$. Then K is compact in \mathbb{R}^n .

Define
$$g: \mathbf{R}^n \longrightarrow \mathbf{C}$$
 by $g(z) = \begin{cases} 0 & \text{if } z_n = 0; \\ f(z) & \text{if } z_n \neq 0. \end{cases}$

Since $\lim_{z\to\partial H_n} f(z) = 0$, g is continuous on K and hence there is $\delta > 0$ such that for $|z_n| < \delta$, $|g(z)| < \varepsilon$. Let $K_{\delta} = \{z \in K : |z_n| \ge \delta\}$. Then for any $z \in H_n \setminus K_{\delta}$, $|f(z)| = |g(z)| < \varepsilon$. Since K_{δ} is compact, $f \in C_0(H_n)$. \square

References

- [1] S. Axler, Bergman Spaces and Their Operators, Surveys of Some Recent Results in Operator Theory Vol. 1, Pitman Research Notes in Math. 171 (1988), 1–50.
- [2] S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
- [3] J. B. Garnett, Bounded Analytic Functions, Academic Press, Inc., New York, 1981.
- [4] K. R. Gindikin, Analysis in homogeneous domains, Russian Mathematical Surveys, 19 (1964), no. 4, 1–89.
- [5] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York and Basel, 1990.

Department of Mathematics, Sookmyung Women's University, Seoul 140-742. Korea

E-mail: shkang@sookmyung.ac.kr jykim@sookmyung.ac.kr