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HARMONIC BERGMAN SPACES OF THE
HALF-SPACE AND THEIR SOME OPERATORS

S1 Ho KANG AND JA Young KiM

ABSTRACT. On the setting of the half-space of the Euclidean n-
space, we consider harmonic Bergman spaces and we also study
properties of the reproducing kernel. Using covering lemma, we find

. . o1 #(Kr(zl)) _
some equivalent quantities. We prove that if lim ———= =0
i—oo V(K (2:))

then the inclusion function I : b — LP(H,,du) is a compact op-

erator. Moreover, we show that if f is a nonnegative continuous

function in L* and lim f(z) =0, then T} is compact if and only
Z— 00

if f € Co(Hy).

1. Introduction

Let H,, be the open subset of the Euclidean space R"™ given by
H, = {(CE,y) Yy > 0},

where we have written a typical point z € R"™ as z = (z,y), with z €
R" ! and y € R*, dV will be the usual n-dimensional volume measure
on H, and B(z,7) the Euclidean ball with center z and radius r. For
1 <p < oo, let

W = {f € h(H,) - /H |FPaV < oo},

where h(H,) is the set of all harmonic functions on H,. Then the
harmonic Bergman space b” is a closed subspace of LP(H,,dV') ([2], [3],
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If p = 2 then L%(H,,dV) is a Hilbert space and hence there is an
orthogonal projection @ from L?(H,,dV) onto b%. For each z € H,,
we define A, : b2 — C by A,(f) = f(z) for all f € b%. Then A, €
(b2)*. Thus there exists a unique function R(z,-) € b? such that f(z) =
Ju, f(w)R(z,w)dV (w) for all f € b and Q(f(2)) = [y, f(w) R(z,w)
dV (w). By Theorem 8.22 in [2], for z = (21, -+, 2p) and w = (wy, -,
wn) € Hp,

4 n(zg+wp)? |z —w|
nV(B) |z — @i t?
which is called the reproducing kernel for b2, where w = (wg, ---,
Wp—1, —Wy). The purpose of this paper is to study these reproducing
kernels and compactness characterization for Toeplitz operators with
nonnegative continuous symbols on the harmonic Bergman space of
the half-plane. In Section 2, we point out how harmonic reproduc-
ing kernels behave differently from one’s on the unit disk. In Section
3, we establish some properties for R(z,-) and the inclusion operator
I: b — LP(H,,du), where p is a positive Borel measure on H,. In
the last section, we give a characterization of the compactness of Toeplitz
operators with nonnegative bounded symbols.

Throughout this paper, the letters C' and C'; denote some constants
and we use the symbol = to indicate that the quotient of two quantities
is bounded above and below by constants when the variables vary.

R(z,w) =

2. The reproducing kernel

LEMMA 2.1. For any z,w € H,, there is & constant C such that

C
R <
Rl < o
Proof. For any z = (21, ,2,) and w = (w1, -+ ,wy) in Hp,
4 n(zp+wy)? — |z — w2
R = ‘
| (Z,w)l TlV(B) Iz_w|n+2
<4 n|z - |* + |z — w|?
~ nV(B) |z — w|n+2
4 n+1
 nV(B) |z —w|"

This completes the proof. O
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PROPOSITION 2.2. For1 < ¢ < oo and z € H,, R(z,-) € bl

Proof. For z,s € R* ! and y € RT,

2 Yy
nV(B)|(z,y) — s

Py, ((z,y),s) =

is the Poisson kernel for H,, and hence

2 Yy
ds=1.
/an nV(B) (o — 52 + yg)n/2

If w = (s,t) and z = (z,y) where s,z € R" ! and ¢,y € R* then

/H |R(z,w)|?dV (w)

1
< Cq/ ————dV(w) by Lemma 2.1
H, |2 — W™

e 1
= C’q/ / nq/2dsdt
0 IR (1 a2+ (y +0?)

< cq/oo/ . wti) dsdt
= Jo SR (y A0 (g 52 4 (y 4 )2)™°
1

o0
=C1/0 (y + t)ra-D+1 dt

o 1

Since R(z,-) is harmonic, R(z,-) is in b%.

LEMMA 2.3. For 1 < p < 0o, there exists C such that

—1/p
/ Yn dV(w) = Cz; VP
Hn

|z —w|"

for all z € Hy,.

775



776 Si Ho Kang and Ja Young Kim

Proof. Fix z = (z,y) € Hy,. Letting w = (s,t) where s € R*~1 an

t € R, we have

t—1/p 1—1/17
/ — n / / — ndsdt
H, |2 wl re-1 (2, y) — (s, —1)|

00 4= 1/p t
= / / y+ dsdt
y+t Jmgnr [(z,y) = (5, —1)|"

o0 y4—1/p
_ / =P RV ( )dt
0 y+t 2

o0 4=1/p
_ nV(B)/ t gt
2 0 y+t

oo ¢—1/p
y 2 ) T

oot—l/p V(B oot—l/p
Since / dt < oo nV(B) / dt is constants and hence
0 0

1+t ©2 L+t
t—1/p
/ —dV (w) = Cy~ /P for some constants C.
H, |z — @

Suppose that p € (1,00) and f € LP(H,,dV). We note that R(z

is harmonic. By the Lebesgue dominated convergence theorem,

Q=) = f( JR(z, w)dV (w)

is harmonic. Suppose % + % = 1. By Lemma 2.1,

uxﬂan:[/’fmuaawmvmw

< c/ e wlndV(w)

1 -1
wn/pq we /pq

=C [ |f(w)] dV(w).

w e wl wp

d

a')
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By the Holder’s inequality and Lemma 2.3,

| levefave
< [, e e

< or / n / n |z_1iz|ndV(w)( /H n ’;U:Z)TndV( ))”/ "V (2)

crc? | £,

Thus Q: LP(H,,dV) — bP is a bounded linear operator.

We want to find some equivalent quantities of the reproducing kernel.
To do so, for any r € (0,1) and any z € H,, we define K,(z) = {w €
H,:|w— z| <rz,}. Then we have the following lemma([4]).

LEMMA 2.4. For r € (0, 3), there exists a sequence {z;} in Hy, such
that (1) UK,(z;) = H, and (2) there is M € N such that for each
z € Hy, |{i: 2z € K, (2:)}| < M.

Proof. Let wm = (Sm,tm) and By, = B(wm, +tm) where s, € Q™!
and t,, € Q. Then UB,, = H,. Put D; = B;. For n > 2, we define
D,, = By, where k is the first element of the {3 : B; N (U}‘;lle) = o}
and let z,, = (Tm,Ym) denote the center of D,, where z,, € R"* ! and
ym € RT. Take any z € H,,. Then z € B, for some m. If B,,ND; = &
for | <m — 1 then D,, = B,, and hence z € K,(2p,). f B,,ND; # &
for some [ < m—1 then ty —y; < |t —ui| < |wm — 21| < St +Tu, L€,
tm < 5+Tyl Thus |z — 21| < |2 — wm| + |Wm — 21| < §tm + Etm + Eur <

ir oAy 4+ Ly = %#yl < ry;. This implies z € K,.(z).

Take any z = (z,y) in H,. Let N, = {m: |z — 2| < 3rym}. For
m € N, and w € Kz (2m), |2 — w| < |2 = 2m| + [2m — w| < 3rym + §Ym

= 16’"ym 5(ffgr)y and hence K (zm) < K s (2). Since {K: (zm)}

is disjoint and

S UKz Gn)l = Cr 3 (Sua)”

meEN, meN,
y 16(1 + 3r)\»
N,|, |N,|< (22T
>Om ((1+3))| LN (S5)
Thus {N,: z € H,} is uniformly bounded. O

PROPOSITION 2.5. For z € Hy, and w € K,(2), R(z,w) =

SN
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—— for all z,w € Hy, |R(z,w)| < g
|z — o 7

Since n(z, +wy)? > |2 — W|?,

Proof. Since ‘R(z,w)| <

|R(z,w)| =

4 ‘n(zn-i—wn)2 — |z —w|? .G
nV(B) |z — w|nt2 Tz

for some C; and hence R(z,w) = o
n

PROPOSITION 2.6. For 1 < p < oo and z € Hp,

IRz, )lp ~ 2y "®~ /P,

Proof. By Proposition 2.5,
IRG A= [ 1RGw)Pdyw

> / |R(z, w)|pdV(w)
K. (z)

= J ™

Note that

1Rz, ) IIp

Il

/ Rz, w)PdV (w)
H,

1

< R

e /Hn @)

< 016'2/ : dw,
o (

Zp 4 wy )P~ F1

o0 1
N / L w

. wz(z)—l)--l n
= Clsz;”(p_l).

The proof is complete. O
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3. The embedding operator

Suppose that 1 < p < oo, p is a positive Borel measure on H,, and
{K,(z)} is the sequence in Lemma 2.4. Let I : b — LP(H,, du) be

‘E/L(Ii(é—l%<Nforallz—12

and M is the multiplicity in Lemma 2.4. Then we can show that I is a
function. To do so, we need the following:

the inclusion function. Suppose that

LEMMA 3.1. For 0 <r <t <1 andl < p < oo, there exists a finite

C
constant C such that |f{w)|P < ——/ PAV for all z € Hp,
IO < VE@) S

w € K,(z) and all harmonic functions f on Hp,.
Proof. Let z € Hy, and let w € K,(z). Since r < ¢, for any harmonic
function f on H,,
1

lf(w)'p = IV(B('LU; (t _ T)Zn)) ,/B(w,(t—'f‘)zn) de,

Ci? /
< —F fIPdV  for some constant Cj.
VD) S '

This implies the result. O

Take any u in bP. Then

| WPt < j{jjf ()Pdp(2)

Hy,

IA

})L () % sup Ju(2)lP

Z2EK(2;)
p( K () /
= C u(2)}PdV
Z K, () KT(Zi)l ()]

< CN§:/ u(2)Fv (2)

37‘(21
< CNM / 2)|PdV (z)
Since u € b7, I : ¥ — LP(H,,du) is a function. In fact, we can show

Kr 7
that I is compact whenever lim M -
n—00 V(KT(ZZ))
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LEMMA 3.2. For 1 < p < o0, ¥’ N L™ is dense in bP.

Proof. Take any € > 0 and any f in b*. For each § > 0 and any
z = (z,y), let f5(z) = f(z,y+5). Then f5 € t». Since Cc(H,,) is dense in
LP, there is g € Cc(Hy) such that ||g— f||, < e. Since %irr(l) llgs — 9ll, =0,

there is 4 > 0 such that for 0 < § < dp, ||gs — gllp < € and hence || f5 —
Pl < 1fs=9sllp+l195—9llp+llg—fll, < 3. Then for any w = (s,¢) € Ha,

[fs(w)P = [f(s,t+ )

1 / p
= f(z)dV(z
e (s TV )
1
< PAV (z).
= V(B((s,t+90),9) /H FE)Fav(z)
This implies fs € L. Thus " N L™ is dense in b”. a
R(Z, )
PROPOSITION 3.3. For 1 < p < oo and z € Hy, W converges
s "/ ip

weakly to 0 in b as 2z, — 0.

Proof. Let %4— % = 1. Take any v in 49 N L*°. Since ||R(z,-)||, =~

1)/ (2,) _
e )<||f]:<z,->np’”> |- IIR(zl, Iy ¢

converges weakly to 0 as z, — 0. O

2)| = 29uv(z)| and hence
R(z,-
I1R(z, )l

LEMMA 3.4. Let 1 < p < oo and let {f.,} be a sequence in b°. Then
{fm} converges weakly to f in bF if and only if {||fm|p : m € N} is
bounded and {f,} converges uniformly to f on each compact subset of
H,.

Proof. Suppose {fn} is a sequence in b such that {f,} converges
weakly to f in ®P. For each g € P, we define A, : (b”)* — C
by Ag(v) = v(g) for all v € (B)". Then ||Ay]| = |lgll,. We note
that {fm} converges weakly to f if and only if "}i_r)noov( fm) =v(f) for
all v € ()" if and only if {Af, } converges pointwise to f in (o°)"
and (bp)* is a Banach space. By the uniform boundedness princi-
ple, sup{||[As,. || : m € N} = sup{||fimllp : m € N} is bounded. For any
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g € P, z € H, and any compact subset K of Hn,

) 1
V(B(z,zn)
1
V(B(z, zn))
1
V(B(z, zn))

WP = /B S ’

IA

| lswprav)
B(z,zn)

IA

lgllp-

By the Arzela-Ascoli theorem, for any compact subset K, there is a
subsequence { fm, } of { fim} such that {fy,, } converges uniformly to f on
K. Since {fm} converges pointwise to f and {fm, } converges uniformly
to f on K, {fm} converges uniformly to f on each compact subset on
H,.

Conversely, take any v in (Cc(Hn))*. By the Riesz representation
theorem, there exists a unique regular, complex-valued Borel measure
pu such that v(g) = [, gdu for all g € Cc(Hy). Note that {f,} con-
verges pointwise to f. By the Lebesgue dominated convergence the-

orem, lim v(f,,) = lim / fmdp =/ fdp =v(f) and hence {fm}

converges weakly to f. O

THEOREM 3.5. If lim M

= 0 then the embedding operator

I is compact.

Proof. Suppose {fm} converges weakly to 0 in b”. By Lemma 3.4,
{fm} converges uniformly on each compact subset of H, and {||fm|lp :

K.(z
m € N} is bounded. Let € > 0 be given. Since lim __“( v (2 ) —0,
T—00 V<KT(Zz))
Kr(z
there is £ € N such that for ¢ > k, ﬁ(_rﬂ
V(K (2))

there is a constant C such that |f,,(?)]P < ——+—
V(K3 (2)) JKsr(z)

< e. By Lemma 3.1,

| fmlPdV
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for all z € K,(z). Then

/ Fml2) Pdi(2)
Hy,
<3 / L nCPanc)

= Z/ | fm(2)Pdpa(2) Z / | fm(2)[Pdp(2)

i=k+1
< fm(2)|Pdu(z) + C K / fim(2)PAV (2
Z/ )P zk;l S [ v

< ;/T(m | fm(2)[Pdp(2) +C€M/Hn | fm(2)PAV (2),

where M is the constant in Lemma 2.4.
Since {fm} converges uniformly to 0 each compact subset of H,,

AE%OZ [, lnePauts) Z [ (P =

and hence lim ||I(fx)||5 = 0. Thus I is compact. O
m—-o0

4. Toeplitz operators on harmonic Bergman spaces

We note that Q : L2(H,,dV) — b? is the Bergman projection. For
f € L™, we define T} : b2 — b2 by T¢(g) = Q(fg) for all g € b?, which
is called the Toeplitz operator with symbol f ([1]). Since ||Q| < 1,
1Tl < 11.f Nfoo-

THEOREM 4.1. Suppose 0 < r < 1,1 < p < oo and u is a positive
Borel measure on H,,. Then

o da 1P (2)
febp Tu 1PV = R V()
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Proof. For z € H,, let g(w) = R(z,w)*?. Then S, lg(w)PdV (w) =
R(z,z). By Proposition 2.5,

Pdu(w z,w)2du(w) = ! —1 z
[ latwpautu) > [ RGP ~ [ = ()

T

Since |R(z,w)| = C1Z for some Cj,

S, l9(w)Pdp(w) ;%;u(Kr(z)) ()
an lg(w)[PdV (w) > % -ct V(E.(2) for some C3 and C.
Ju, |f1Pdp 1K ()

This implies that sup +—2——— > su .
st fH | flPdV zef?n V(K- (2))

Suppose {K,.(z)} is the sequence and M is the constant in Lemma 2.4.
Let f € b be such that f £ 0. Then

\fPdp < / \FPdy
/Hn ; Kr(z;)

<Z sup | f (w) [P (K7 (2:))

=1 wEKr(Zz)

=1 V(Kl-gr (Zz)) Kl__ﬁ_l (Zz)

r(z))
ey

< CM sup

z€H,

<E\
~

Thus
sup ———an /Py & sup ———M(Kr(z»
e fH |fIPdV " cen, V(K (2)) 0

PROPOSITION 4.2. Let K be a compact subset of H,. If f is in L*®
and f =0 on H, \ K then T} is compact.

Proof. Let {gm} be a norm bounded sequence in b2. Take any
compact subset K; of H,. By Holder’s inequality, for any z € Kj,
9m(2)| < [y, l9m(w)R(z,w)|dV (w) < |gml|2l|R(-,w)||2 and hence there
is a harmonic function g on H, and a subsequence {gm, } of {gm} which
converges uniformly on K7 to g. Since Ty is continuous, T¢(gm, ) con-
verges to T¢(g). Thus Ty is compact. O
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PROPOSITION 4.3. Let f be a nonnegative function in L. If there

exists r € (0,1) such that lim f(w)dV (w) =0, then

w=0 V(Kr(2)) Ji,(2)
Ty is compact.
1
Proof. For each k € N, let Dy = [k, k] > -+ x [k, k] x [E’k] and

let fi(z) = f(2)xp,(2). Then Dy is compact. By Proposition 4.2, each
Ty, is compact. Then

k .
T — Ty > = sup ||(Ty— Tp)(w)l3

l[ull2=1

= swp [ |(fu fr) )R w)PdV ()

flulle=1 Hn

< sup/ |(fu—fku)(w)R(z,w)|2dV(w)
Hp\Dy

lull2=1

< C sup / f2|u|?dV for some C
llullz=1J Hn\Ds,

= C sup / an\DkleuIQdV

flullz=1
- 2dv
< C,C sup Ju, XK (2 XH\DS
z€H V(Kr(z))

for some C by Theorem 4.1

S, xXr, (:\D 2 ul2dV
< CqiC n ;
- ' ‘|fl|mzi1?n V((‘(T‘(z))

By the assumption, klim | T — T4, || = 0. By Proposition 4.2, each T¥,
—00

is compact and hence Ty also compact. [l

THEOREM 4.4. Let f be a nonnegative function in L*°. Then the
following are equivalent: ‘

(1) Ty is compact.

1
2) There existsr € (0,1) such that lim ————— fw)dV (w) =
. _ )
(3) For any r € (0,1), lim —— / F(w)dV (w) = 0.
zn—0 V(Kr(z)) Kr(2)

Proof. 1t is clear that (3) implies (2). By Proposition 4.3, (2) implies
(1). It is enough to show that (1) implies (3) to complete the proof.
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Suppose T} is a compact operator and z = (z,y). For any r € (0,1),

1 :
ED) / )

~ x fw)dV (w)

Zn JK,(2)

2
~ / f(w)%dV(w) by Proposition 2.5 and Propositon 2.6
o 2

= —M”— Z,w w P w

- /m TIER] / B, )Rz, )dv(t)dV(w)
_fw)

: /Hn |R(z,)|2 TRG R &Y . R(w,t)R(z,t)dV (t)dV (w)

)
)
=y TR e R Y () S av 0
= [, i) O @
= (RS TR

1
By Proposition 3.3, hm e / f(w)dV (w) = 0. O
(Kr(2) Jrr(2)

zn—0 V

THEOREM 4.5. Supposé that f is a nonnegative continuous fiinction
in L*® and lim f(z) = 0. Then the following are equivalent:
Z2—00

(1) Ty is compact
(2) lim f(z) =

Z—)

()fECO( n)-

Proof. Suppose Ty is compact and lim f(z) > 0 for some zy € 0H,.
2—20

Then there is » > 0 such that for |z — 2| < r and z € H,, f(z) > %,
where lim,_,,, f(z) = A. This contradicts the fact that for any r € (0, 1),
1
im ——— f(w)dV (w) =0.
zn—0 V(Kr(z)) K (2)
Conversely, take any r € (0,1) any z = (z,y) € H,. Let 2o = (z,0).
Then 2y € OHy and lim f(z) = 0 and hence for any ¢ > 0 thereis § > 0

z—2zp
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such that for |z — 29| < §,|f(2)| < e. Put 2 = (z, ¥). Then

1
__V(Kr(zl)) /Kr(zl) fw)dV (w) < e.

This implies that Ty is compact.

It is enough to show that (2) implies (3) to complete the proof. Since
lim f(z) = 0, for any € > 0, there is M > 0 such that for |z| > M,
Z—00
|f(2)] < e Let K ={(z,y) :|z] < Mand 0 <y < M}. Then K is
compact in R”™.

0 ifz,=0;

f(z)y ifz, #0.

Since lim f(z) =0, g is continuous on K and hence there is § > 0 such

z—

that for |zn7i <6, |g9(2)] <e. Let K5 ={z € K : |2,] > §}. Then for any
z € Hp\ Ks, |f(2)| = |9(2)| < e. Since Kj is compact, f € Co(H,). O

Define g : R® — C by g(z) ={
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