A Note on Central Limit Theorem on $L^{P}(R)^{+}$

Sungho Lee¹⁾ and Dug Hun Hong²⁾

Abstract

In this paper a central limit theorem on $L^P(R)$ for $1 \le p < \infty$ is obtained with an example when $\{X_n\}$ is a sequence of independent, identically distributed random variables on $L^P(R)$.

Keywords: L^P random variable, central limit theorem, kernel density estimation, $C_0(R)$ random variable.

Limit theorems on $L^P(R)$ have strong applications in statistical estimation. In paticular the L^1 consistency of kernel density estimators has been supported by several authors, most notably by Devroye and Györfi(1985) and central limit theorems for L^P norms of kernel density estimators were obtained by Csörgö and Horváth(1988). Zinn(1977) reformulated the central limit theorem of Hoffmann-Jørgensen and Pisier(1976) and also obtained some central limit theorems on $L^P[0,1]$, $1 \le p < \infty$. Central limit theorem on a separable Banach space can be defined as follows. Let E be a separable Banach space. A probability measure μ on E is said to be Gaussian if the finite dimensional distribution of μ are Gaussian, i.e., given any positive integer n and $f_1, f_2, \cdots, f_n \in E^*$, the dual space of E, the distribution induced in R^n by (f_1, \dots, f_n) is Gaussian. An E-valued random variable X is Gaussian if its distribution μ is. An E-valued random variable X with distribution μ is said to satisfy the central limit theorem if the sequence of measures $\{\mu_n\}$, induced by the sequence of random variables $\{n^{-\frac{1}{2}}(X_1 + \dots + X_n)\}$, where X_1, X_2, \dots, X_n are independent copies of X, converges weakly to a Gaussian measure ν , i.e.,

$$\int f d\mu_n \rightarrow \int f d\nu, \quad \text{for every } f \in E^*.$$

In this note we give a central limit theorem on $L^{p}(R)$, $1 \le p < \infty$, with applications to kernel

⁺ This paper was partially supported by Institute of Natural Sciences, Taegu University,

¹⁾ Department of Statistics, Taegu University, Kyungbuk, 712-714, KOREA.

²⁾ Department of Statistics, Catholic University of Taegu Hyosung, Kyungbuk 712-702, KOREA.

density estimations, which is based on the following Zinn(1977) 's result .

Theorem 1. (Zinn(1977))

- (i) A linear map $\nu: E \to F$ is of type 2 if and only if for every Radon probability μ on E satisfying $\int \|x\|^2 \mu(dx) < \infty$ and $\int x \mu(dx) = 0$, $\mu \circ \nu^{-1}$ satisfies the central limit theorem on E.
- (ii) If μ is a Borel probability on C[0,1] satisfying $\int \|x\|^2 \mu(dx) < \infty$ and $\int x \mu(dx) = 0$, then μ satisfies the central limit theorem on $L^P[0,1]$ for any $1 \le p < \infty$.

Note that C(R), the space of all bounded continuous functions on R, is not a separable Banach space with sup norm. Hence the above central limit theorem on $L^P[0,1]$ can not be directly applied to $L^P(R)$. Now let,

$$C_0(R) = \{f: f \text{ is continuous and } \lim_{|t| \to \infty} f(t) = 0\}$$
.

Then a central limit theorem on $L^{P}(R)$ can be obtained as follows.

Theorem 2. If μ is a Borel probability on $C_0(R)$ satisfying $\int \|x\|^2 \mu(dx) < \infty$ and $\int x \mu(dx) = 0$, then μ satisfies the central limit theorem on $L^P(R)$ for $1 \le p < \infty$.

Proof. Since $C_0(R)$ is a separable Banach space with sup norm, μ is a Radon probability. Thus, by Theorem1, we need only to show that a linear map $v: C_0(R) \to L^P(R)$ is of type 2. Since any continuous map from \mathcal{L}^{∞} -space to \mathcal{L}^P -space is of type 2 (see Zinn(1977)) and $C_0(R) \subset \mathcal{L}^{\infty}$, v is of type 2.

Remark. Statistical data analysis using the criterion of the least absolute value methods necessitates limit theorems on $L^1(R)$ space. When p=1, $L^1(R)$ is of cotype 2 and the central limit theorem for X on $L^1(R)$ holds if the X is pre-Gaussian. However, Theorem 2 is still useful in functional estimation as the following example indicates(cf. Taylor and Hu(1987)).

Example. Let X_1, X_2, \dots, X_n be a random sample having the same density f(t) belonging to $C_0(R)$. Let K(t) be an even, bounded, compactly supported probability density function which is strictly decreasing in its support as |t| increases and satisfy $|K(x)-K(y)| \le H|x-y|^{\alpha}$, for all $x, y \in R$ and $H, \alpha > 0$. Then

$$X_{nk}(t) = K(\frac{t-X_k}{h_n}) - EK(\frac{t-X_k}{h_n}), \quad h_n \to 0,$$

is a random variable in $C_0(R)$ and hence $\{\mu_n\}$ induced by $\{n^{-1/2}(X_{n1}+\cdots+X_{nn})\}$, converges weakly to a Gaussian measure ν .

References

- [1] Csörgö, M and Horváth, L. (1988). Central limit theorem for L_P -norms of density estimators, *Probability Theory and Related Fields*, Vol. 80, 269-291.
- [2] Devroye, L and Györfi. (1985). Nonparametric Density Estimation, The L₁ View, John Wiley, New York.
- [3] Hoffmann-Jørgensen, J. and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces, *Annals of Probability*, Vol. 4, 587-599.
- [4] Lee, Sungho and Taylor, R. L. (1993). Random elements in $L^1(R)$ and Kernel density estimators, *Journal of the Korean Statistical Society*, Vol. 22, 83-91.
- [5] Taylor, R. L. and Hu, T. C. (1987). Consistency of kernel density estimators and laws of large numbers in C₀(R), In Mathematical Statistics and Probability Theory, Vol. A of the Proceedings of 6th Pannonian Symposium on Mathematical Statistics, D. Reidel Publ. Comp, Dordrecht, 253-266.
- [6] Zinn, J. (1977). A note on the central limit theorem in Banach space, *Annals of Probability*, Vol. 5, 283-286.