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ABSTRACT. We prove an extended version of asymptotic behavior of the orthonormal cardi-
nal refinable functions from Blaschke products introduced by Contronei et al [2]. In fact, we
show the orthonormal cardinal refinable function ϕk,q converges in Lp(R) (2 ≤ p ≤ ∞)
to the Shannon refinable function as k → ∞ uniformly on a class QA,B of real symmetric
polynomials determined by positive constants A ≤ B.

1. INTRODUCTION

Recently, Contronei et al. [2] constructed an interesting class of orthonormal cardinal refin-
able functions with rational symbols using Blaschke products. The rational symbols are of the
form

Pk,q(z) :=
(1 + z)2k+1q(z)

(1 + z)2k+1q(z)− (1− z)2k+1q(−z)
, z ∈ C, (1.1)

where

q(z) =
N/2∑

j=0

α2j(1 + z)N−2j(1− z)2j , z ∈ C, (1.2)

is a real symmetric polynomial of degree N := 2n − 2k, and the corresponding orthonormal
cardinal refinable functions ϕk,q are defined by the Fourier transform:

ϕ̂k,q(w) :=
∞∏

l=1

Pk,q(e−iw/2l
). (1.3)

The study of refinable functions which are both orthonormal, and cardinal was addressed in
[3, 6].
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We consider the classQA,B (0 < A ≤ B < ∞) of all real symmetric polynomials q of (1.2)
such that

A ≤ |Q(w)| ≤ B for all w,

where Q is defined for w ∈ R as

Q(w) :=
n−k∑

j=0

(−1)jα2j

(
cos2

w

2

)n−k−j (
sin2 w

2

)j
.

Note that
∣∣q (

e−iw
)∣∣ = 22(n−k) |Q(w)|. We show that the refinable function ϕk,q converges

in Lp(R) (2 ≤ p ≤ ∞) to the Shannon refinable function ϕSH uniformly on q ∈ QA,B as
k →∞, where

ϕ̂SH(w) := χ[−π,π](w).
The main result here is an extended version of [2, Thoerem 4.3]. We mention that the analogous
asymptotic behaviors for other families of refinable functions are treated in [2, 4, 5] with similar
proofs.

2. MAIN RESULT

For a real symmetric polynomial q(z) with

0 < A ≤ 2−2(n−k)|q(e−iw)| = |Q(w)| ≤ B < ∞, (2.1)

we can easily check that as k →∞ the symbol

Pk,q(e−iw) =
1

1− i2k+1(tan w
2 )2k+1q(−e−iw)/q(e−iw)

converges pointwise to the symbol

mSH(w) =
{

1, |w| < π/2,
0, π/2 < |w| < π

of the Shannon refinable function ϕSH as k → ∞. We also note that for a fixed w with
|w| < π/2 or π/2 < |w| < π the convergence is uniform on the class QA,B of all real
symmetric polynomial q satisfying (2.1).

Before the statement and proof of the main result, we need some technical lemmas. Fix a
positive integer K, we define an auxiliary symbol

mK(w) =





1, |w| ≤ π
2 ;

B

A

(
cos2(2K+1)(w/2)

cos2(2K+1)(w/2) + sin2(2K+1)(w/2)

)1/2

, π
2 ≤ |w| ≤ π

for the domination of Pk,q(e−iw).
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Lemma 2.1. (a) |Pk,q(e−iw)| ≤ mK(w), k ≥ K, q ∈ QA,B.

(b) ϕ̂K(w) :=
∏

l∈NmK(w/2l) has the decay |ϕ̂K(w)| ≤ C(1 + |w|)−K−1/2+log2 B/A.

(c) |Pk,q(e−iw)− 1| ≤
{

1, for all w,
2B

πA
|w|, |w| ≤ π/2,

q ∈ QA,B.

Proof. (a) It is obtained by direct computation that

|Pk,q(e−iw)| =



(cos2
w

2
)2k+1Q(w)2

(cos2
w

2
)2k+1Q(w)2 + (sin2 w

2
)2k+1Q(w + π)2




1/2

≤ 1, all w.

For π/2 ≤ |w| ≤ π, |Pk,q(e−iw)| ≤ mK(w) by (2.1) if k ≥ K since |Pk,q(e−iw)| is decreasing
as k increases.
(b) We note that mK(w) = cos2K+1(w/2)SK(w), where

SK(w) =





1
cos2K+1(w/2)

, |w| ≤ π
2

B

A

(
1

cos2(2K+1)(w/2) + sin2(2K+1)(w/2)

)1/2

, π
2 ≤ |w| ≤ π,

and note that supw |SK(w)| = 2K max{B/A,
√

2} ≤ 2K+1/2B/A. Therefore, the decay of
ϕ̂K(w) follows, for example, from [1, Theorem 5.5].
(c) We note that

|P (e−iw)− 1|2 =
(sin2 w

2
)2k+1Q(w + π)2

(cos2
w

2
)2k+1Q(w)2 + (sin2 w

2
)2k+1Q(w + π)2

.

The first estimate of (c) is obvious. For the second estimate of (c), we let |w| ≤ π/2 and note

|P (e−iw)− 1|2 ≤
(sin2 w

2
)2k+1Q(w + π)2

(cos2
w

2
)2k+1Q(w)2

≤
(

B

A

)2

(tan2 w

2
)2k+1 ≤

(
B

A

)2

tan2 w

2
≤

(
B

A

)2 (
2
π
|w|

)2

.

2

Lemma 2.2. (a) For each fixed w, ϕ̂k,q(w) =
∏∞

l=1 Pk,q(e−iw/2l
) converges uniformly on k

and on q ∈ QA,B.
(b) For a.e. w, ϕ̂k,q(w) → ϕ̂SH(w) uniformly on q ∈ QA,B as k →∞.
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Proof. (a) Fix w and choose l0 so that |w/2l0 | ≤ π/2. By Lemma 2.1 (c),
∞∑

l=1

|Pk,q(e−iw/2l
)− 1| =

l0∑

l=1

|Pk,q(e−iw/2l
)− 1|+

∞∑

l=l0+1

|Pk,q(e−iw/2l
)− 1|

≤ l0 +
∞∑

l=l0+1

2B

πA

|w|
2l

= l0 +
2B

πA

|w|
2l0

,

uniformly on k and on q ∈ QA,B . Therefore, the product ϕ̂k,q(w) converges uniformly on k
and on q ∈ QA,B for a fixed w.
(b) Fix w /∈ ∪∞l=12

l(±π/2 + 2πZ) and let ε > 0. By (a) we can choose l1 (independent of k
and q ∈ QA,B) so that

|ϕ̂k,q(w)−
l1∏

l=1

Pk,q(e−iw/2l
)| < ε

and

|ϕ̂SH(w)−
l1∏

l=1

mSH(w/2l)| < ε.

Therefore, we have

|ϕ̂k,q(w)− ϕ̂SH(w)| ≤
∣∣∣∣∣ϕ̂k,q(w)−

l1∏

l=1

Pk,q(e−iw/2l
)

∣∣∣∣∣

+

∣∣∣∣∣
l1∏

l=1

Pk,q(e−iw/2l
)−

l1∏

l=1

mSH(w/2l)

∣∣∣∣∣

+

∣∣∣∣∣
l1∏

l=1

mSH(w/2l)− ϕ̂SH(w)

∣∣∣∣∣

< 2ε +

∣∣∣∣∣
l1∏

l=1

Pk,q(e−iw/2l
)−

l1∏

l=1

mSH(w/2l)

∣∣∣∣∣ .

Note that w/2l /∈ ±π/2 + 2πZ for any l ≥ 1. Since Pk,q(e−iw/2l
) → mSH(w/2l) as k →∞

for l = 1, 2, · · · , l1, we can choose k0 so that∣∣∣∣∣
l1∏

l=1

Pk,q(e−iw/2l
)−

l1∏

l=1

mSH(w/2l)

∣∣∣∣∣ < ε, k ≥ k0.

Therefore, for a.e. w, ϕ̂k,q(w) → ϕ̂SH(w) uniformly on q ∈ QA,B as k →∞.
2

Now, we state and prove our main result. The case A = B = 1 reduces to Theorem 4.3 in
[2].
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Theorem 2.3. Let 0 < A < B < ∞.

(a) For 1 ≤ p < ∞, ||ϕ̂k,q − ϕ̂SH ||Lp(R) → 0 (k →∞) uniformly on q ∈ QA,B .
(b) For 2 ≤ p′ ≤ ∞, ||ϕk,q − ϕSH ||Lp′ (R) → 0 (k → ∞) uniformly on q ∈ QA,B . In

particular, ϕk,q → ϕSH uniformly on R and on q ∈ QA,B

Proof. Choose K so large that K + 1/2 − log2 B/A > 1. We estimate the decay of ϕ̂k,q for
k ≥ K :

|ϕ̂k,q(w)| =
∏

l∈N

∣∣∣Pk,q(e−iw/2l
)
∣∣∣ ≤

∏

l∈N
mK(w/2l)

= |ϕ̂K(w)| ≤ C(1 + |w|)−K−1/2+log2 B/A ∈ L1(R) ∩ L2(R),

where we used Lemma 2.1. We now apply the Lebesgue dominated convergence theorem to
supq∈QA,B

|ϕ̂k,q − ϕ̂SH |p to get

sup
q∈QA,B

||ϕ̂k,q − ϕ̂SH ||Lp(R) ≤ || sup
q∈QA,B

|ϕ̂k,q − ϕ̂SH | ||Lp(R) → 0

as k → ∞. Therefore, ϕ̂k,q → ϕ̂SH in Lp(R) uniformly on q ∈ QA,B. The claim (b) follows
from (a) by the Hausdorff-Young inequality:

||f ||Lp′ (R) ≤ ||f̂ ||Lp(R), for 1 ≤ p ≤ 2,

where p′ is the exponent conjugate to p. 2
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